One Hat Cyber Team
Your IP :
172.16.0.254
Server IP :
58.26.163.33
Server :
Windows NT DGPENSV2LPKMN 10.0 build 14393 (Windows Server 2016) AMD64
Server Software :
Apache/2.4.46 (Win64) OpenSSL/1.1.1h PHP/7.3.25
PHP Version :
7.3.25
Buat File
|
Buat Folder
Eksekusi
Dir :
C:
/
xampp7
/
perl
/
vendor
/
lib
/
Win32API
/
Edit File:
CommPort.pm
# This part includes the low-level API calls package Win32API::CommPort; use strict; use warnings; use Win32; use Win32::API; use Carp; #### API declarations #### no strict 'subs'; # these may be imported someday our $_CreateFile = Win32::API->new("kernel32", "CreateFile", [P, N, N, N, N, N, N], N); our $_CloseHandle = Win32::API->new("kernel32", "CloseHandle", [N], N); our $_GetCommState = Win32::API->new("kernel32", "GetCommState", [N, P], I); our $_SetCommState = Win32::API->new("kernel32", "SetCommState", [N, P], I); our $_SetupComm = Win32::API->new("kernel32", "SetupComm", [N, N, N], I); our $_PurgeComm = Win32::API->new("kernel32", "PurgeComm", [N, N], I); our $_CreateEvent = Win32::API->new("kernel32", "CreateEvent", [P, I, I, P], N); our $_GetCommTimeouts = Win32::API->new("kernel32", "GetCommTimeouts", [N, P], I); our $_SetCommTimeouts = Win32::API->new("kernel32", "SetCommTimeouts", [N, P], I); our $_GetCommProperties = Win32::API->new("kernel32", "GetCommProperties", [N, P], I); our $_ReadFile = Win32::API->new("kernel32", "ReadFile", [N, P, N, P, P], I); our $_WriteFile = Win32::API->new("kernel32", "WriteFile", [N, P, N, P, P], I); our $_TransmitCommChar = Win32::API->new("kernel32", "TransmitCommChar", [N, I], I); our $_ClearCommBreak = Win32::API->new("kernel32", "ClearCommBreak", [N], I); our $_SetCommBreak = Win32::API->new("kernel32", "SetCommBreak", [N], I); our $_ClearCommError = Win32::API->new("kernel32", "ClearCommError", [N, P, P], I); our $_EscapeCommFunction = Win32::API->new("kernel32", "EscapeCommFunction", [N, N], I); our $_GetCommModemStatus = Win32::API->new("kernel32", "GetCommModemStatus", [N, P], I); our $_GetOverlappedResult = Win32::API->new("kernel32", "GetOverlappedResult", [N, P, P, I], I); #### these are not used yet our $_GetCommConfig = Win32::API->new("kernel32", "GetCommConfig", [N, P, P], I); our $_GetCommMask = Win32::API->new("kernel32", "GetCommMask", [N, P], I); our $_SetCommConfig = Win32::API->new("kernel32", "SetCommConfig", [N, P, N], I); our $_SetCommMask = Win32::API->new("kernel32", "SetCommMask", [N, N], I); our $_WaitCommEvent = Win32::API->new("kernel32", "WaitCommEvent", [N, P, P], I); our $_ResetEvent = Win32::API->new("kernel32", "ResetEvent", [N], I); use strict; our $VERSION = '0.21'; our $RBUF_Size = 4096; require Exporter; our @ISA = qw(Exporter); our @EXPORT= qw(); our @EXPORT_OK= qw(); our %EXPORT_TAGS = ( STAT => [qw( BM_fCtsHold BM_fDsrHold BM_fRlsdHold BM_fXoffHold BM_fXoffSent BM_fEof BM_fTxim BM_AllBits MS_CTS_ON MS_DSR_ON MS_RING_ON MS_RLSD_ON CE_RXOVER CE_OVERRUN CE_RXPARITY CE_FRAME CE_BREAK CE_TXFULL CE_MODE ST_BLOCK ST_INPUT ST_OUTPUT ST_ERROR )], RAW => [qw( CloseHandle CreateFile GetCommState ReadFile SetCommState SetupComm PurgeComm CreateEvent GetCommTimeouts SetCommTimeouts GetCommProperties ClearCommBreak ClearCommError EscapeCommFunction GetCommConfig GetCommMask GetCommModemStatus SetCommBreak SetCommConfig SetCommMask TransmitCommChar WaitCommEvent WriteFile ResetEvent GetOverlappedResult PURGE_TXABORT PURGE_RXABORT PURGE_TXCLEAR PURGE_RXCLEAR SETXOFF SETXON SETRTS CLRRTS SETDTR CLRDTR SETBREAK CLRBREAK EV_RXCHAR EV_RXFLAG EV_TXEMPTY EV_CTS EV_DSR EV_RLSD EV_BREAK EV_ERR EV_RING EV_PERR EV_RX80FULL EV_EVENT1 EV_EVENT2 ERROR_IO_INCOMPLETE ERROR_IO_PENDING )], COMMPROP => [qw( BAUD_USER BAUD_075 BAUD_110 BAUD_134_5 BAUD_150 BAUD_300 BAUD_600 BAUD_1200 BAUD_1800 BAUD_2400 BAUD_4800 BAUD_7200 BAUD_9600 BAUD_14400 BAUD_19200 BAUD_38400 BAUD_56K BAUD_57600 BAUD_115200 BAUD_128K PST_FAX PST_LAT PST_MODEM PST_RS232 PST_RS422 PST_RS423 PST_RS449 PST_SCANNER PST_X25 PST_NETWORK_BRIDGE PST_PARALLELPORT PST_TCPIP_TELNET PST_UNSPECIFIED PCF_INTTIMEOUTS PCF_PARITY_CHECK PCF_16BITMODE PCF_DTRDSR PCF_SPECIALCHARS PCF_RLSD PCF_RTSCTS PCF_SETXCHAR PCF_TOTALTIMEOUTS PCF_XONXOFF SP_BAUD SP_DATABITS SP_HANDSHAKING SP_PARITY SP_PARITY_CHECK SP_RLSD SP_STOPBITS SP_SERIALCOMM DATABITS_5 DATABITS_6 DATABITS_7 DATABITS_8 DATABITS_16 DATABITS_16X STOPBITS_10 STOPBITS_15 STOPBITS_20 PARITY_SPACE PARITY_NONE PARITY_ODD PARITY_EVEN PARITY_MARK COMMPROP_INITIALIZED )], DCB => [qw( CBR_110 CBR_300 CBR_600 CBR_1200 CBR_2400 CBR_4800 CBR_9600 CBR_14400 CBR_19200 CBR_38400 CBR_56000 CBR_57600 CBR_115200 CBR_128000 CBR_256000 DTR_CONTROL_DISABLE DTR_CONTROL_ENABLE DTR_CONTROL_HANDSHAKE RTS_CONTROL_DISABLE RTS_CONTROL_ENABLE RTS_CONTROL_HANDSHAKE RTS_CONTROL_TOGGLE EVENPARITY MARKPARITY NOPARITY ODDPARITY SPACEPARITY ONESTOPBIT ONE5STOPBITS TWOSTOPBITS FM_fBinary FM_fParity FM_fOutxCtsFlow FM_fOutxDsrFlow FM_fDtrControl FM_fDsrSensitivity FM_fTXContinueOnXoff FM_fOutX FM_fInX FM_fErrorChar FM_fNull FM_fRtsControl FM_fAbortOnError FM_fDummy2 )], PARAM => [qw( LONGsize SHORTsize OS_Error nocarp internal_buffer yes_true )]); Exporter::export_ok_tags('STAT', 'RAW', 'COMMPROP', 'DCB', 'PARAM'); $EXPORT_TAGS{ALL} = \@EXPORT_OK; #### subroutine wrappers for API calls sub CloseHandle { return unless ( 1 == @_ ); return $_CloseHandle->Call( shift ); } sub CreateFile { return $_CreateFile->Call( @_ ); # returns handle } sub GetCommState { return $_GetCommState->Call( @_ ); } sub SetCommState { return $_SetCommState->Call( @_ ); } sub SetupComm { return $_SetupComm->Call( @_ ); } sub PurgeComm { return $_PurgeComm->Call( @_ ); } sub CreateEvent { return $_CreateEvent->Call( @_ ); } sub GetCommTimeouts { return $_GetCommTimeouts->Call( @_ ); } sub SetCommTimeouts { return $_SetCommTimeouts->Call( @_ ); } sub GetCommProperties { return $_GetCommProperties->Call( @_ ); } sub ReadFile { return $_ReadFile->Call( @_ ); } sub WriteFile { return $_WriteFile->Call( @_ ); } sub TransmitCommChar { return $_TransmitCommChar->Call( @_ ); } sub ClearCommBreak { return unless ( 1 == @_ ); return $_ClearCommBreak->Call( shift ); } sub SetCommBreak { return unless ( 1 == @_ ); return $_SetCommBreak->Call( shift ); } sub ClearCommError { return $_ClearCommError->Call( @_ ); } sub EscapeCommFunction { return $_EscapeCommFunction->Call( @_ ); } sub GetCommModemStatus { return $_GetCommModemStatus->Call( @_ ); } sub GetOverlappedResult { return $_GetOverlappedResult->Call( @_ ); } sub GetCommConfig { return $_GetCommConfig->Call( @_ ); } sub GetCommMask { return $_GetCommMask->Call( @_ ); } sub SetCommConfig { return $_SetCommConfig->Call( @_ ); } sub SetCommMask { return $_SetCommMask->Call( @_ ); } sub WaitCommEvent { return $_WaitCommEvent->Call( @_ ); } sub ResetEvent { return unless ( 1 == @_ ); return $_ResetEvent->Call( shift ); } #### "constant" declarations from Win32 header files #### #### compatible with ActiveState #### ## COMMPROP structure use constant SP_SERIALCOMM => 0x1; use constant BAUD_075 => 0x1; use constant BAUD_110 => 0x2; use constant BAUD_134_5 => 0x4; use constant BAUD_150 => 0x8; use constant BAUD_300 => 0x10; use constant BAUD_600 => 0x20; use constant BAUD_1200 => 0x40; use constant BAUD_1800 => 0x80; use constant BAUD_2400 => 0x100; use constant BAUD_4800 => 0x200; use constant BAUD_7200 => 0x400; use constant BAUD_9600 => 0x800; use constant BAUD_14400 => 0x1000; use constant BAUD_19200 => 0x2000; use constant BAUD_38400 => 0x4000; use constant BAUD_56K => 0x8000; use constant BAUD_57600 => 0x40000; use constant BAUD_115200 => 0x20000; use constant BAUD_128K => 0x10000; use constant BAUD_USER => 0x10000000; use constant PST_FAX => 0x21; use constant PST_LAT => 0x101; use constant PST_MODEM => 0x6; use constant PST_NETWORK_BRIDGE => 0x100; use constant PST_PARALLELPORT => 0x2; use constant PST_RS232 => 0x1; use constant PST_RS422 => 0x3; use constant PST_RS423 => 0x4; use constant PST_RS449 => 0x5; use constant PST_SCANNER => 0x22; use constant PST_TCPIP_TELNET => 0x102; use constant PST_UNSPECIFIED => 0; use constant PST_X25 => 0x103; use constant PCF_16BITMODE => 0x200; use constant PCF_DTRDSR => 0x1; use constant PCF_INTTIMEOUTS => 0x80; use constant PCF_PARITY_CHECK => 0x8; use constant PCF_RLSD => 0x4; use constant PCF_RTSCTS => 0x2; use constant PCF_SETXCHAR => 0x20; use constant PCF_SPECIALCHARS => 0x100; use constant PCF_TOTALTIMEOUTS => 0x40; use constant PCF_XONXOFF => 0x10; use constant SP_BAUD => 0x2; use constant SP_DATABITS => 0x4; use constant SP_HANDSHAKING => 0x10; use constant SP_PARITY => 0x1; use constant SP_PARITY_CHECK => 0x20; use constant SP_RLSD => 0x40; use constant SP_STOPBITS => 0x8; use constant DATABITS_5 => 1; use constant DATABITS_6 => 2; use constant DATABITS_7 => 4; use constant DATABITS_8 => 8; use constant DATABITS_16 => 16; use constant DATABITS_16X => 32; use constant STOPBITS_10 => 1; use constant STOPBITS_15 => 2; use constant STOPBITS_20 => 4; use constant PARITY_NONE => 256; use constant PARITY_ODD => 512; use constant PARITY_EVEN => 1024; use constant PARITY_MARK => 2048; use constant PARITY_SPACE => 4096; use constant COMMPROP_INITIALIZED => 0xe73cf52e; ## DCB structure use constant CBR_110 => 110; use constant CBR_300 => 300; use constant CBR_600 => 600; use constant CBR_1200 => 1200; use constant CBR_2400 => 2400; use constant CBR_4800 => 4800; use constant CBR_9600 => 9600; use constant CBR_14400 => 14400; use constant CBR_19200 => 19200; use constant CBR_38400 => 38400; use constant CBR_56000 => 56000; use constant CBR_57600 => 57600; use constant CBR_115200 => 115200; use constant CBR_128000 => 128000; use constant CBR_256000 => 256000; use constant DTR_CONTROL_DISABLE => 0; use constant DTR_CONTROL_ENABLE => 1; use constant DTR_CONTROL_HANDSHAKE => 2; use constant RTS_CONTROL_DISABLE => 0; use constant RTS_CONTROL_ENABLE => 1; use constant RTS_CONTROL_HANDSHAKE => 2; use constant RTS_CONTROL_TOGGLE => 3; use constant EVENPARITY => 2; use constant MARKPARITY => 3; use constant NOPARITY => 0; use constant ODDPARITY => 1; use constant SPACEPARITY => 4; use constant ONESTOPBIT => 0; use constant ONE5STOPBITS => 1; use constant TWOSTOPBITS => 2; ## Flowcontrol bit mask in DCB use constant FM_fBinary => 0x1; use constant FM_fParity => 0x2; use constant FM_fOutxCtsFlow => 0x4; use constant FM_fOutxDsrFlow => 0x8; use constant FM_fDtrControl => 0x30; use constant FM_fDsrSensitivity => 0x40; use constant FM_fTXContinueOnXoff => 0x80; use constant FM_fOutX => 0x100; use constant FM_fInX => 0x200; use constant FM_fErrorChar => 0x400; use constant FM_fNull => 0x800; use constant FM_fRtsControl => 0x3000; use constant FM_fAbortOnError => 0x4000; use constant FM_fDummy2 => 0xffff8000; ## COMSTAT bit mask use constant BM_fCtsHold => 0x1; use constant BM_fDsrHold => 0x2; use constant BM_fRlsdHold => 0x4; use constant BM_fXoffHold => 0x8; use constant BM_fXoffSent => 0x10; use constant BM_fEof => 0x20; use constant BM_fTxim => 0x40; use constant BM_AllBits => 0x7f; ## PurgeComm bit mask use constant PURGE_TXABORT => 0x1; use constant PURGE_RXABORT => 0x2; use constant PURGE_TXCLEAR => 0x4; use constant PURGE_RXCLEAR => 0x8; ## GetCommModemStatus bit mask use constant MS_CTS_ON => 0x10; use constant MS_DSR_ON => 0x20; use constant MS_RING_ON => 0x40; use constant MS_RLSD_ON => 0x80; ## EscapeCommFunction operations use constant SETXOFF => 0x1; use constant SETXON => 0x2; use constant SETRTS => 0x3; use constant CLRRTS => 0x4; use constant SETDTR => 0x5; use constant CLRDTR => 0x6; use constant SETBREAK => 0x8; use constant CLRBREAK => 0x9; ## ClearCommError bit mask use constant CE_RXOVER => 0x1; use constant CE_OVERRUN => 0x2; use constant CE_RXPARITY => 0x4; use constant CE_FRAME => 0x8; use constant CE_BREAK => 0x10; use constant CE_TXFULL => 0x100; #### LPT only # use constant CE_PTO => 0x200; # use constant CE_IOE => 0x400; # use constant CE_DNS => 0x800; # use constant CE_OOP => 0x1000; #### LPT only use constant CE_MODE => 0x8000; ## GetCommMask bits use constant EV_RXCHAR => 0x1; use constant EV_RXFLAG => 0x2; use constant EV_TXEMPTY => 0x4; use constant EV_CTS => 0x8; use constant EV_DSR => 0x10; use constant EV_RLSD => 0x20; use constant EV_BREAK => 0x40; use constant EV_ERR => 0x80; use constant EV_RING => 0x100; use constant EV_PERR => 0x200; use constant EV_RX80FULL => 0x400; use constant EV_EVENT1 => 0x800; use constant EV_EVENT2 => 0x1000; ## Allowed OVERLAP errors use constant ERROR_IO_INCOMPLETE => 996; use constant ERROR_IO_PENDING => 997; #### "constant" declarations compatible with ActiveState #### my $DCBformat="LLLSSSCCCCCCCCS"; my $CP_format1="SSLLLLLLLLLSSLLLLSA*"; # rs232 my $CP_format6="SSLLLLLLLLLSSLLLLLLLLLLLLLLLLLLLLLLLA*"; # modem my $CP_format0="SA50LA244"; # pre-read my $OVERLAPPEDformat="LLLLL"; my $TIMEOUTformat="LLLLL"; my $COMSTATformat="LLL"; my $cfg_file_sig="Win32API::SerialPort_Configuration_File -- DO NOT EDIT --\n"; use constant SHORTsize => 0xffff; use constant LONGsize => 0xffffffff; use constant ST_BLOCK => 0; # status offsets for caller use constant ST_INPUT => 1; use constant ST_OUTPUT => 2; use constant ST_ERROR => 3; # latched #### Package variable declarations #### my %Yes_resp = ( "YES" => 1, "Y" => 1, "ON" => 1, "TRUE" => 1, "T" => 1, "1" => 1 ); my @binary_opt = (0, 1); my @byte_opt = (0, 255); my $Babble = 0; my $testactive = 0; # test mode active ## my $null=[]; my $null=0; my $zero=0; # Preloaded methods go here. sub OS_Error { print Win32::FormatMessage ( Win32::GetLastError() ); } sub get_tick_count { return Win32::GetTickCount(); } # test*.t only - suppresses default messages sub set_no_messages { return unless (@_ == 2); $testactive = yes_true($_[1]); } sub nocarp { return $testactive } sub internal_buffer { return $RBUF_Size } sub yes_true { my $choice = uc shift; return 1 if (exists $Yes_resp{$choice}); return 0; } sub new { my $proto = shift; my $class = ref($proto) || $proto; my $self = {}; my $ok = 0; # API return value my $hr = 0; # temporary hashref my $fmask = 0; # temporary for bit banging my $fix_baud = 0; my $key; my $value; my $CommPropBlank = " "; # COMMPROP only used during new my $CommProperties = " "x300; # extra buffer for modems my $CP_Length = 0; my $CP_Version = 0; my $CP_ServiceMask = 0; my $CP_Reserved1 = 0; my $CP_MaxBaud = 0; my $CP_ProvCapabilities = 0; my $CP_SettableParams = 0; my $CP_SettableBaud = 0; my $CP_SettableData = 0; my $CP_SettableStopParity = 0; my $CP_ProvSpec1 = 0; my $CP_ProvSpec2 = 0; my $CP_ProvChar_start = 0; my $CP_Filler = 0; # MODEMDEVCAPS my $MC_ReqSize = 0; my $MC_SpecOffset = 0; my $MC_SpecSize = 0; my $MC_ProvVersion = 0; my $MC_ManfOffset = 0; my $MC_ManfSize = 0; my $MC_ModOffset = 0; my $MC_ModSize = 0; my $MC_VerOffset = 0; my $MC_VerSize = 0; my $MC_DialOpt = 0; my $MC_CallFailTime = 0; my $MC_IdleTime = 0; my $MC_SpkrVol = 0; my $MC_SpkrMode = 0; my $MC_ModOpt = 0; my $MC_MaxDTE = 0; my $MC_MaxDCE = 0; my $MC_Filler = 0; $self->{NAME} = shift; my $quiet = shift; $self->{"_HANDLE"}=CreateFile("$self->{NAME}", 0xc0000000, 0, $null, 3, 0x40000000, $null); # device name # GENERIC_READ | GENERIC_WRITE # no FILE_SHARE_xx # no SECURITY_xx # OPEN_EXISTING # FILE_FLAG_OVERLAPPED # template file unless ($self->{"_HANDLE"} >= 1) { $self->{"_HANDLE"} = 0; return 0 if ($quiet); return if (nocarp); OS_Error; carp "can't open device: $self->{NAME}\n"; return; } # let Win32 know we allowed room for modem properties $CP_Length = 300; $CP_ProvSpec1 = COMMPROP_INITIALIZED; $CommProperties = pack($CP_format0, $CP_Length, $CommPropBlank, $CP_ProvSpec1, $CommPropBlank); $ok=GetCommProperties($self->{"_HANDLE"}, $CommProperties); unless ( $ok ) { OS_Error; carp "can't get COMMPROP block"; undef $self; return; } ($CP_Length, $CP_Version, $CP_ServiceMask, $CP_Reserved1, $self->{"_MaxTxQueue"}, $self->{"_MaxRxQueue"}, $CP_MaxBaud, $self->{"_TYPE"}, $CP_ProvCapabilities, $CP_SettableParams, $CP_SettableBaud, $CP_SettableData, $CP_SettableStopParity, $self->{WRITEBUF}, $self->{READBUF}, $CP_ProvSpec1, $CP_ProvSpec2, $CP_ProvChar_start, $CP_Filler)= unpack($CP_format1, $CommProperties); if (($CP_Length > 64) and ($self->{"_TYPE"} == PST_RS232)) { carp "invalid COMMPROP block length= $CP_Length"; undef $self; return; } if ($CP_ServiceMask != SP_SERIALCOMM) { carp "doesn't claim to be a serial port\n"; undef $self; return; } if ($self->{"_TYPE"} == PST_MODEM) { ($CP_Length, $CP_Version, $CP_ServiceMask, $CP_Reserved1, $self->{"_MaxTxQueue"}, $self->{"_MaxRxQueue"}, $CP_MaxBaud, $self->{"_TYPE"}, $CP_ProvCapabilities, $CP_SettableParams, $CP_SettableBaud, $CP_SettableData, $CP_SettableStopParity, $self->{WRITEBUF}, $self->{READBUF}, $CP_ProvSpec1, $CP_ProvSpec2, $CP_ProvChar_start, $MC_ReqSize, $MC_SpecOffset, $MC_SpecSize, $MC_ProvVersion, $MC_ManfOffset, $MC_ManfSize, $MC_ModOffset, $MC_ModSize, $MC_VerOffset, $MC_VerSize, $MC_DialOpt, $MC_CallFailTime, $MC_IdleTime, $MC_SpkrVol, $MC_SpkrMode, $MC_ModOpt, $MC_MaxDTE, $MC_MaxDCE, $MC_Filler)= unpack($CP_format6, $CommProperties); if ($Babble) { printf "\nMODEMDEVCAPS:\n"; printf "\$MC_ActualSize= %d\n", $CP_ProvChar_start; printf "\$MC_ReqSize= %d\n", $MC_ReqSize; printf "\$MC_SpecOffset= %d\n", $MC_SpecOffset; printf "\$MC_SpecSize= %d\n", $MC_SpecSize; if ($MC_SpecOffset) { printf " DeviceSpecificData= %s\n", substr ($CommProperties, 60+$MC_SpecOffset, $MC_SpecSize); } printf "\$MC_ProvVersion= %d\n", $MC_ProvVersion; printf "\$MC_ManfOffset= %d\n", $MC_ManfOffset; printf "\$MC_ManfSize= %d\n", $MC_ManfSize; if ($MC_ManfOffset) { printf " Manufacturer= %s\n", substr ($CommProperties, 60+$MC_ManfOffset, $MC_ManfSize); } printf "\$MC_ModOffset= %d\n", $MC_ModOffset; printf "\$MC_ModSize= %d\n", $MC_ModSize; if ($MC_ModOffset) { printf " Model= %s\n", substr ($CommProperties, 60+$MC_ModOffset, $MC_ModSize); } printf "\$MC_VerOffset= %d\n", $MC_VerOffset; printf "\$MC_VerSize= %d\n", $MC_VerSize; if ($MC_VerOffset) { printf " Version= %s\n", substr ($CommProperties, 60+$MC_VerOffset, $MC_VerSize); } printf "\$MC_DialOpt= %lx\n", $MC_DialOpt; printf "\$MC_CallFailTime= %d\n", $MC_CallFailTime; printf "\$MC_IdleTime= %d\n", $MC_IdleTime; printf "\$MC_SpkrVol= %d\n", $MC_SpkrVol; printf "\$MC_SpkrMode= %d\n", $MC_SpkrMode; printf "\$MC_ModOpt= %lx\n", $MC_ModOpt; printf "\$MC_MaxDTE= %d\n", $MC_MaxDTE; printf "\$MC_MaxDCE= %d\n", $MC_MaxDCE; $MC_Filler= $MC_Filler; # for -w } ## $MC_ReqSize = 250; if ($CP_ProvChar_start != $MC_ReqSize) { printf "\nARGH, a Bug! The \$CommProperties buffer must be "; printf "at least %d bytes.\n", $MC_ReqSize+60; } } ## if (1 | $Babble) { if ($Babble) { printf "\$CP_Length= %d\n", $CP_Length; printf "\$CP_Version= %d\n", $CP_Version; printf "\$CP_ServiceMask= %lx\n", $CP_ServiceMask; printf "\$CP_Reserved1= %lx\n", $CP_Reserved1; printf "\$CP_MaxTxQueue= %lx\n", $self->{"_MaxTxQueue"}; printf "\$CP_MaxRxQueue= %lx\n", $self->{"_MaxRxQueue"}; printf "\$CP_MaxBaud= %lx\n", $CP_MaxBaud; printf "\$CP_ProvSubType= %lx\n", $self->{"_TYPE"}; printf "\$CP_ProvCapabilities= %lx\n", $CP_ProvCapabilities; printf "\$CP_SettableParams= %lx\n", $CP_SettableParams; printf "\$CP_SettableBaud= %lx\n", $CP_SettableBaud; printf "\$CP_SettableData= %x\n", $CP_SettableData; printf "\$CP_SettableStopParity= %x\n", $CP_SettableStopParity; printf "\$CP_CurrentTxQueue= %lx\n", $self->{WRITEBUF}; printf "\$CP_CurrentRxQueue= %lx\n", $self->{READBUF}; printf "\$CP_ProvSpec1= %lx\n", $CP_ProvSpec1; printf "\$CP_ProvSpec2= %lx\n", $CP_ProvSpec2; } # "private" data $self->{"_INIT"} = undef; $self->{"_DEBUG_C"} = 0; $self->{"_LATCH"} = 0; $self->{"_W_BUSY"} = 0; $self->{"_R_BUSY"} = 0; $self->{"_TBUFMAX"} = $self->{"_MaxTxQueue"} ? $self->{"_MaxTxQueue"} : LONGsize; $self->{"_RBUFMAX"} = $self->{"_MaxRxQueue"} ? $self->{"_MaxRxQueue"} : LONGsize; # buffers $self->{"_R_OVERLAP"} = " "x24; $self->{"_W_OVERLAP"} = " "x24; $self->{"_TIMEOUT"} = " "x24; $self->{"_RBUF"} = " "x $RBUF_Size; # allowed setting hashes $self->{"_L_BAUD"} = {}; $self->{"_L_STOP"} = {}; $self->{"_L_PARITY"} = {}; $self->{"_L_DATA"} = {}; $self->{"_L_HSHAKE"} = {}; # capability flags $fmask = $CP_SettableParams; $self->{"_C_BAUD"} = $fmask & SP_BAUD; $self->{"_C_DATA"} = $fmask & SP_DATABITS; $self->{"_C_STOP"} = $fmask & SP_STOPBITS; $self->{"_C_HSHAKE"} = $fmask & SP_HANDSHAKING; $self->{"_C_PARITY_CFG"} = $fmask & SP_PARITY; $self->{"_C_PARITY_EN"} = $fmask & SP_PARITY_CHECK; $self->{"_C_RLSD_CFG"} = $fmask & SP_RLSD; $fmask = $CP_ProvCapabilities; $self->{"_C_RLSD"} = $fmask & PCF_RLSD; $self->{"_C_PARITY_CK"} = $fmask & PCF_PARITY_CHECK; $self->{"_C_DTRDSR"} = $fmask & PCF_DTRDSR; $self->{"_C_16BITMODE"} = $fmask & PCF_16BITMODE; $self->{"_C_RTSCTS"} = $fmask & PCF_RTSCTS; $self->{"_C_XONXOFF"} = $fmask & PCF_XONXOFF; $self->{"_C_XON_CHAR"} = $fmask & PCF_SETXCHAR; $self->{"_C_SPECHAR"} = $fmask & PCF_SPECIALCHARS; $self->{"_C_INT_TIME"} = $fmask & PCF_INTTIMEOUTS; $self->{"_C_TOT_TIME"} = $fmask & PCF_TOTALTIMEOUTS; if ($self->{"_C_INT_TIME"}) { $self->{"_N_RINT"} = LONGsize; # min interval default } else { $self->{"_N_RINT"} = 0; } $self->{"_N_RTOT"} = 0; $self->{"_N_RCONST"} = 0; if ($self->{"_C_TOT_TIME"}) { $self->{"_N_WCONST"} = 201; # startup overhead + 1 $self->{"_N_WTOT"} = 11; # per char out + 1 } else { $self->{"_N_WTOT"} = 0; $self->{"_N_WCONST"} = 0; } $hr = \%{$self->{"_L_HSHAKE"}}; if ($self->{"_C_HSHAKE"}) { ${$hr}{"xoff"} = "xoff" if ($fmask & PCF_XONXOFF); ${$hr}{"rts"} = "rts" if ($fmask & PCF_RTSCTS); ${$hr}{"dtr"} = "dtr" if ($fmask & PCF_DTRDSR); ${$hr}{"none"} = "none"; } else { $self->{"_N_HSHAKE"} = undef; } #### really just using the keys here, so value = Win32_definition #### in case we ever need it for something else # first check for programmable baud $hr = \%{$self->{"_L_BAUD"}}; if ($CP_MaxBaud & BAUD_USER) { $fmask = $CP_SettableBaud; ${$hr}{110} = CBR_110 if ($fmask & BAUD_110); ${$hr}{300} = CBR_300 if ($fmask & BAUD_300); ${$hr}{600} = CBR_600 if ($fmask & BAUD_600); ${$hr}{1200} = CBR_1200 if ($fmask & BAUD_1200); ${$hr}{2400} = CBR_2400 if ($fmask & BAUD_2400); ${$hr}{4800} = CBR_4800 if ($fmask & BAUD_4800); ${$hr}{9600} = CBR_9600 if ($fmask & BAUD_9600); ${$hr}{14400} = CBR_14400 if ($fmask & BAUD_14400); ${$hr}{19200} = CBR_19200 if ($fmask & BAUD_19200); ${$hr}{38400} = CBR_38400 if ($fmask & BAUD_38400); ${$hr}{56000} = CBR_56000 if ($fmask & BAUD_56K); ${$hr}{57600} = CBR_57600 if ($fmask & BAUD_57600); ${$hr}{115200} = CBR_115200 if ($fmask & BAUD_115200); ${$hr}{128000} = CBR_128000 if ($fmask & BAUD_128K); ${$hr}{256000} = CBR_256000 if (0); # reserved ?? } else { # get fixed baud from CP_MaxBaud $fmask = $CP_MaxBaud; $fix_baud = 75 if ($fmask & BAUD_075); $fix_baud = 110 if ($fmask & BAUD_110); $fix_baud = 134.5 if ($fmask & BAUD_134_5); $fix_baud = 150 if ($fmask & BAUD_150); $fix_baud = 300 if ($fmask & BAUD_300); $fix_baud = 600 if ($fmask & BAUD_600); $fix_baud = 1200 if ($fmask & BAUD_1200); $fix_baud = 1800 if ($fmask & BAUD_1800); $fix_baud = 2400 if ($fmask & BAUD_2400); $fix_baud = 4800 if ($fmask & BAUD_4800); $fix_baud = 7200 if ($fmask & BAUD_7200); $fix_baud = 9600 if ($fmask & BAUD_9600); $fix_baud = 14400 if ($fmask & BAUD_14400); $fix_baud = 19200 if ($fmask & BAUD_19200); $fix_baud = 34800 if ($fmask & BAUD_38400); $fix_baud = 56000 if ($fmask & BAUD_56K); $fix_baud = 57600 if ($fmask & BAUD_57600); $fix_baud = 115200 if ($fmask & BAUD_115200); $fix_baud = 128000 if ($fmask & BAUD_128K); ${$hr}{$fix_baud} = $fix_baud; $self->{"_N_BAUD"} = undef; } #### data bits $fmask = $CP_SettableData; if ($self->{"_C_DATA"}) { $hr = \%{$self->{"_L_DATA"}}; ${$hr}{5} = 5 if ($fmask & DATABITS_5); ${$hr}{6} = 6 if ($fmask & DATABITS_6); ${$hr}{7} = 7 if ($fmask & DATABITS_7); ${$hr}{8} = 8 if ($fmask & DATABITS_8); ${$hr}{16} = 16 if ($fmask & DATABITS_16); ## ${$hr}{16X} = 16 if ($fmask & DATABITS_16X); } else { $self->{"_N_DATA"} = undef; } #### value = (DCB Win32_definition + 1) so 0 means unchanged $fmask = $CP_SettableStopParity; if ($self->{"_C_STOP"}) { $hr = \%{$self->{"_L_STOP"}}; ${$hr}{1} = 1 + ONESTOPBIT if ($fmask & STOPBITS_10); ${$hr}{1.5} = 1 + ONE5STOPBITS if ($fmask & STOPBITS_15); ${$hr}{2} = 1 + TWOSTOPBITS if ($fmask & STOPBITS_20); } else { $self->{"_N_STOP"} = undef; } if ($self->{"_C_PARITY_CFG"}) { $hr = \%{$self->{"_L_PARITY"}}; ${$hr}{"none"} = 1 + NOPARITY if ($fmask & PARITY_NONE); ${$hr}{"even"} = 1 + EVENPARITY if ($fmask & PARITY_EVEN); ${$hr}{"odd"} = 1 + ODDPARITY if ($fmask & PARITY_ODD); ${$hr}{"mark"} = 1 + MARKPARITY if ($fmask & PARITY_MARK); ${$hr}{"space"} = 1 + SPACEPARITY if ($fmask & PARITY_SPACE); } else { $self->{"_N_PARITY"} = undef; } $hr = 0; # no loops # changable dcb parameters # 0 = no change requested # mask_on: requested value for OR # mask_off: complement of requested value for AND $self->{"_N_FM_ON"} = 0; $self->{"_N_FM_OFF"} = 0; $self->{"_N_AUX_ON"} = 0; $self->{"_N_AUX_OFF"} = 0; ### "VALUE" is initialized from DCB by default (but also in %validate) # 0 = no change requested # integer: requested value or (value+1 if 0 is a legal value) # binary: 1=false requested, 2=true requested $self->{"_N_XONLIM"} = 0; $self->{"_N_XOFFLIM"} = 0; $self->{"_N_XOFFCHAR"} = 0; $self->{"_N_XONCHAR"} = 0; $self->{"_N_ERRCHAR"} = 0; $self->{"_N_EOFCHAR"} = 0; $self->{"_N_EVTCHAR"} = 0; $self->{"_N_BINARY"} = 0; $self->{"_N_PARITY_EN"} = 0; ### "_N_items" for save/start $self->{"_N_READBUF"} = 0; $self->{"_N_WRITEBUF"} = 0; $self->{"_N_HSHAKE"} = 0; ### The "required" DCB values are deliberately NOT defined. That way, ### write_settings can verify they "exist" to assure they got set. ### $self->{"_N_BAUD"} ### $self->{"_N_DATA"} ### $self->{"_N_STOP"} ### $self->{"_N_PARITY"} $self->{"_R_EVENT"} = CreateEvent($null, # no security 1, # explicit reset req 0, # initial event reset $null); # no name unless ($self->{"_R_EVENT"}) { OS_Error; carp "could not create required read event"; undef $self; return; } $self->{"_W_EVENT"} = CreateEvent($null, # no security 1, # explicit reset req 0, # initial event reset $null); # no name unless ($self->{"_W_EVENT"}) { OS_Error; carp "could not create required write event"; undef $self; return; } $self->{"_R_OVERLAP"} = pack($OVERLAPPEDformat, $zero, # osRead_Internal, $zero, # osRead_InternalHigh, $zero, # osRead_Offset, $zero, # osRead_OffsetHigh, $self->{"_R_EVENT"}); $self->{"_W_OVERLAP"} = pack($OVERLAPPEDformat, $zero, # osWrite_Internal, $zero, # osWrite_InternalHigh, $zero, # osWrite_Offset, $zero, # osWrite_OffsetHigh, $self->{"_W_EVENT"}); # Device Control Block (DCB) unless ( fetch_DCB ($self) ) { carp "can't read Device Control Block for $self->{NAME}\n"; undef $self; return; } $self->{"_L_BAUD"}{$self->{BAUD}} = $self->{BAUD}; # actual must be ok # Read Timeouts unless ( GetCommTimeouts($self->{"_HANDLE"}, $self->{"_TIMEOUT"}) ) { carp "Error in GetCommTimeouts"; undef $self; return; } ($self->{RINT}, $self->{RTOT}, $self->{RCONST}, $self->{WTOT}, $self->{WCONST})= unpack($TIMEOUTformat, $self->{"_TIMEOUT"}); bless ($self, $class); return $self; } sub fetch_DCB { my $self = shift; my $ok; my $hr; my $fmask; my $key; my $value; my $dcb = " "x32; GetCommState($self->{"_HANDLE"}, $dcb) or return; ($self->{"_DCBLength"}, $self->{BAUD}, $self->{"_BitMask"}, $self->{"_ResvWORD"}, $self->{XONLIM}, $self->{XOFFLIM}, $self->{DATA}, $self->{"_Parity"}, $self->{"_StopBits"}, $self->{XONCHAR}, $self->{XOFFCHAR}, $self->{ERRCHAR}, $self->{EOFCHAR}, $self->{EVTCHAR}, $self->{"_PackWORD"})= unpack($DCBformat, $dcb); if ($self->{"_DCBLength"} > 32) { carp "invalid DCB block length"; return; } if ($Babble) { printf "DCBLength= %d\n", $self->{"_DCBLength"}; printf "BaudRate= %d\n", $self->{BAUD}; printf "BitMask= %lx\n", $self->{"_BitMask"}; printf "ResvWORD= %x\n", $self->{"_ResvWORD"}; printf "XonLim= %x\n", $self->{XONLIM}; printf "XoffLim= %x\n", $self->{XOFFLIM}; printf "ByteSize= %d\n", $self->{DATA}; printf "Parity= %d\n", $self->{"_Parity"}; printf "StopBits= %d\n", $self->{"_StopBits"}; printf "XonChar= %x\n", $self->{XONCHAR}; printf "XoffChar= %x\n", $self->{XOFFCHAR}; printf "ErrorChar= %x\n", $self->{ERRCHAR}; printf "EofChar= %x\n", $self->{EOFCHAR}; printf "EvtChar= %x\n", $self->{EVTCHAR}; printf "PackWORD= %x\n", $self->{"_PackWORD"}; printf "handle= %d\n\n", $self->{"_HANDLE"}; } $fmask = 1 + $self->{"_StopBits"}; while (($key, $value) = each %{ $self->{"_L_STOP"} }) { if ($value == $fmask) { $self->{STOP} = $key; } } $fmask = 1 + $self->{"_Parity"}; while (($key, $value) = each %{ $self->{"_L_PARITY"} }) { if ($value == $fmask) { $self->{PARITY} = $key; } } $fmask = $self->{"_BitMask"}; $hr = DTR_CONTROL_HANDSHAKE; $ok = RTS_CONTROL_HANDSHAKE; if ($fmask & ( $hr << 4) ) { $self->{HSHAKE} = "dtr"; } elsif ($fmask & ( $ok << 12) ) { $self->{HSHAKE} = "rts"; } elsif ($fmask & ( FM_fOutX | FM_fInX ) ) { $self->{HSHAKE} = "xoff"; } else { $self->{HSHAKE} = "none"; } $self->{BINARY} = ($fmask & FM_fBinary); $self->{PARITY_EN} = ($fmask & FM_fParity); if ($fmask & FM_fDummy2) { carp "Unknown DCB Flow Mask Bit in $self->{NAME}"; } 1; } sub init_done { my $self = shift; return 0 unless (defined $self->{"_INIT"}); return $self->{"_INIT"}; } sub update_DCB { my $self = shift; my $ok = 0; return unless (defined $self->{"_INIT"}); fetch_DCB ($self); if ($self->{"_N_HSHAKE"}) { $self->{HSHAKE} = $self->{"_N_HSHAKE"}; if ($self->{HSHAKE} eq "dtr" ) { $self->{"_N_FM_ON"} = 0x1028; $self->{"_N_FM_OFF"} = 0xffffdceb; } elsif ($self->{HSHAKE} eq "rts" ) { $self->{"_N_FM_ON"} = 0x2014; $self->{"_N_FM_OFF"} = 0xffffecd7; } elsif ($self->{HSHAKE} eq "xoff" ) { $self->{"_N_FM_ON"} = 0x1310; $self->{"_N_FM_OFF"} = 0xffffdfd3; } else { $self->{"_N_FM_ON"} = 0x1010; $self->{"_N_FM_OFF"} = 0xffffdcd3; } $self->{"_N_HSHAKE"} = 0; } if ($self->{"_N_PARITY_EN"}) { if (2 == $self->{"_N_PARITY_EN"}) { $self->{"_N_FM_ON"} |= FM_fParity; # enable if ($self->{"_N_FM_OFF"}) { $self->{"_N_FM_OFF"} |= FM_fParity; } else { $self->{"_N_FM_OFF"} = LONGsize; } } else { if ($self->{"_N_FM_ON"}) { $self->{"_N_FM_ON"} &= ~FM_fParity; # disable } if ($self->{"_N_FM_OFF"}) { $self->{"_N_FM_OFF"} &= ~FM_fParity; } else { $self->{"_N_FM_OFF"} = ~FM_fParity; } } ## DEBUG ## ## printf "_N_FM_ON=%lx\n", $self->{"_N_FM_ON"}; ## DEBUG ## ## printf "_N_FM_OFF=%lx\n", $self->{"_N_FM_OFF"}; ## DEBUG ## ## DEBUG ## $self->{"_N_PARITY_EN"} = 0; } ## DEBUG ## ## printf "_N_AUX_ON=%lx\n", $self->{"_N_AUX_ON"}; ## DEBUG ## ## printf "_N_AUX_OFF=%lx\n", $self->{"_N_AUX_OFF"}; ## DEBUG ## ## DEBUG ## if ( $self->{"_N_AUX_ON"} or $self->{"_N_AUX_OFF"} ) { if ( $self->{"_N_FM_OFF"} ) { $self->{"_N_FM_OFF"} &= $self->{"_N_AUX_OFF"}; } else { $self->{"_N_FM_OFF"} = $self->{"_N_AUX_OFF"}; } $self->{"_N_FM_ON"} |= $self->{"_N_AUX_ON"}; $self->{"_N_AUX_ON"} = 0; $self->{"_N_AUX_OFF"} = 0; } ## DEBUG ## ## printf "_N_FM_ON=%lx\n", $self->{"_N_FM_ON"}; ## DEBUG ## ## printf "_N_FM_OFF=%lx\n", $self->{"_N_FM_OFF"}; ## DEBUG ## ## DEBUG ## if ( $self->{"_N_FM_ON"} or $self->{"_N_FM_OFF"} ) { $self->{"_BitMask"} &= $self->{"_N_FM_OFF"}; $self->{"_BitMask"} |= $self->{"_N_FM_ON"}; $self->{"_N_FM_ON"} = 0; $self->{"_N_FM_OFF"} = 0; } if ($self->{"_N_XONLIM"}) { $self->{XONLIM} = $self->{"_N_XONLIM"} - 1; $self->{"_N_XONLIM"} = 0; } if ($self->{"_N_XOFFLIM"}) { $self->{XOFFLIM} = $self->{"_N_XOFFLIM"} - 1; $self->{"_N_XOFFLIM"} = 0; } if ($self->{"_N_BAUD"}) { $self->{BAUD} = $self->{"_N_BAUD"}; $self->{"_N_BAUD"} = 0; } if ($self->{"_N_DATA"}) { $self->{DATA} = $self->{"_N_DATA"}; $self->{"_N_DATA"} = 0; } if ($self->{"_N_STOP"}) { $self->{"_StopBits"} = $self->{"_N_STOP"} - 1; $self->{"_N_STOP"} = 0; } if ($self->{"_N_PARITY"}) { $self->{"_Parity"} = $self->{"_N_PARITY"} - 1; $self->{"_N_PARITY"} = 0; } if ($self->{"_N_XONCHAR"}) { $self->{XONCHAR} = $self->{"_N_XONCHAR"} - 1; $self->{"_N_XONCHAR"} = 0; } if ($self->{"_N_XOFFCHAR"}) { $self->{XOFFCHAR} = $self->{"_N_XOFFCHAR"} - 1; $self->{"_N_XOFFCHAR"} = 0; } if ($self->{"_N_ERRCHAR"}) { $self->{ERRCHAR} = $self->{"_N_ERRCHAR"} - 1; $self->{"_N_ERRCHAR"} = 0; } if ($self->{"_N_EOFCHAR"}) { $self->{EOFCHAR} = $self->{"_N_EOFCHAR"} - 1; $self->{"_N_EOFCHAR"} = 0; } if ($self->{"_N_EVTCHAR"}) { $self->{EVTCHAR} = $self->{"_N_EVTCHAR"} - 1; $self->{"_N_EVTCHAR"} = 0; } my $dcb = pack($DCBformat, $self->{"_DCBLength"}, $self->{BAUD}, $self->{"_BitMask"}, $self->{"_ResvWORD"}, $self->{XONLIM}, $self->{XOFFLIM}, $self->{DATA}, $self->{"_Parity"}, $self->{"_StopBits"}, $self->{XONCHAR}, $self->{XOFFCHAR}, $self->{ERRCHAR}, $self->{EOFCHAR}, $self->{EVTCHAR}, $self->{"_PackWORD"}); if ( SetCommState($self->{"_HANDLE"}, $dcb) ) { print "updated DCB for $self->{NAME}\n" if ($Babble); ## DEBUG ## ## printf "DEBUG BitMask= %lx\n", $self->{"_BitMask"}; ## DEBUG ## ## DEBUG ## } else { carp "SetCommState failed"; OS_Error; if ($Babble) { printf "\ntried to write:\n"; printf "DCBLength= %d\n", $self->{"_DCBLength"}; printf "BaudRate= %d\n", $self->{BAUD}; printf "BitMask= %lx\n", $self->{"_BitMask"}; printf "ResvWORD= %x\n", $self->{"_ResvWORD"}; printf "XonLim= %x\n", $self->{XONLIM}; printf "XoffLim= %x\n", $self->{XOFFLIM}; printf "ByteSize= %d\n", $self->{DATA}; printf "Parity= %d\n", $self->{"_Parity"}; printf "StopBits= %d\n", $self->{"_StopBits"}; printf "XonChar= %x\n", $self->{XONCHAR}; printf "XoffChar= %x\n", $self->{XOFFCHAR}; printf "ErrorChar= %x\n", $self->{ERRCHAR}; printf "EofChar= %x\n", $self->{EOFCHAR}; printf "EvtChar= %x\n", $self->{EVTCHAR}; printf "PackWORD= %x\n", $self->{"_PackWORD"}; printf "handle= %d\n", $self->{"_HANDLE"}; } } } sub initialize { my $self = shift; my $item; my $fault = 0; foreach $item (@_) { unless (exists $self->{"_N_$item"}) { # must be "exists" so undef=not_settable $fault++; nocarp or carp "Missing REQUIRED setting for $item"; } } unless ($self->{"_INIT"}) { $self->{"_INIT"} = 1 unless ($fault); $self->{"_BitMask"} = 0x1011; $self->{XONLIM} = 100 unless ($self->{"_N_XONLIM"}); $self->{XOFFLIM} = 100 unless ($self->{"_N_XOFFLIM"}); $self->{XONCHAR} = 0x11 unless ($self->{"_N_XONCHAR"}); $self->{XOFFCHAR} = 0x13 unless ($self->{"_N_XOFFCHAR"}); $self->{ERRCHAR} = 0 unless ($self->{"_N_ERRCHAR"}); $self->{EOFCHAR} = 0 unless ($self->{"_N_EOFCHAR"}); $self->{EVTCHAR} = 0 unless ($self->{"_N_EVTCHAR"}); update_timeouts($self); } if ($self->{"_N_READBUF"} or $self->{"_N_WRITEBUF"}) { if ($self->{"_N_READBUF"}) { $self->{READBUF} = $self->{"_N_READBUF"}; } if ($self->{"_N_WRITEBUF"}) { $self->{WRITEBUF} = $self->{"_N_WRITEBUF"}; } $self->{"_N_READBUF"} = 0; $self->{"_N_WRITEBUF"} = 0; SetupComm($self->{"_HANDLE"}, $self->{READBUF}, $self->{WRITEBUF}); } purge_all($self); return $fault; } sub is_status { my $self = shift; my $ok = 0; my $error_p = " "x4; my $CommStatus = " "x12; if (@_ and $testactive) { $self->{"_LATCH"} |= shift; } $ok=ClearCommError($self->{"_HANDLE"}, $error_p, $CommStatus); my $Error_BitMask = unpack("L", $error_p); $self->{"_LATCH"} |= $Error_BitMask; my @stat = unpack($COMSTATformat, $CommStatus); push @stat, $self->{"_LATCH"}; $stat[ST_BLOCK] &= BM_AllBits; if ( $Babble or $self->{"_DEBUG_C"} ) { printf "Blocking Bits= %d\n", $stat[ST_BLOCK]; printf "Input Queue= %d\n", $stat[ST_INPUT]; printf "Output Queue= %d\n", $stat[ST_OUTPUT]; printf "Latched Errors= %d\n", $stat[ST_ERROR]; printf "ok= %d\n", $ok; } return ($ok ? @stat : undef); } sub reset_error { my $self = shift; my $was = $self->{"_LATCH"}; $self->{"_LATCH"} = 0; return $was; } sub can_baud { my $self = shift; return $self->{"_C_BAUD"}; } sub can_databits { my $self = shift; return $self->{"_C_DATA"}; } sub can_stopbits { my $self = shift; return $self->{"_C_STOP"}; } sub can_dtrdsr { my $self = shift; return $self->{"_C_DTRDSR"}; } sub can_handshake { my $self = shift; return $self->{"_C_HSHAKE"}; } sub can_parity_check { my $self = shift; return $self->{"_C_PARITY_CK"}; } sub can_parity_config { my $self = shift; return $self->{"_C_PARITY_CFG"}; } sub can_parity_enable { my $self = shift; return $self->{"_C_PARITY_EN"}; } sub can_rlsd_config { my $self = shift; return $self->{"_C_RLSD_CFG"}; } sub can_rlsd { my $self = shift; return $self->{"_C_RLSD"}; } sub can_16bitmode { my $self = shift; return $self->{"_C_16BITMODE"}; } sub can_ioctl { my $self = shift; return 0; # unix only } sub is_rs232 { my $self = shift; return ($self->{"_TYPE"} == PST_RS232); } sub is_modem { my $self = shift; return ($self->{"_TYPE"} == PST_MODEM); } sub can_rtscts { my $self = shift; return $self->{"_C_RTSCTS"}; } sub can_xonxoff { my $self = shift; return $self->{"_C_XONXOFF"}; } sub can_xon_char { my $self = shift; return $self->{"_C_XON_CHAR"}; } sub can_spec_char { my $self = shift; return $self->{"_C_SPECHAR"}; } sub can_interval_timeout { my $self = shift; return $self->{"_C_INT_TIME"}; } sub can_total_timeout { my $self = shift; return $self->{"_C_TOT_TIME"}; } sub is_handshake { my $self = shift; if (@_) { return unless $self->{"_C_HSHAKE"}; return unless (defined $self->{"_L_HSHAKE"}{$_[0]}); $self->{"_N_HSHAKE"} = $self->{"_L_HSHAKE"}{$_[0]}; update_DCB ($self); } return unless fetch_DCB ($self); return $self->{HSHAKE}; } sub are_handshake { my $self = shift; return unless $self->{"_C_HSHAKE"}; return if (@_); return keys(%{$self->{"_L_HSHAKE"}}); } sub is_baudrate { my $self = shift; if (@_) { return unless $self->{"_C_BAUD"}; return unless (defined $self->{"_L_BAUD"}{$_[0]}); $self->{"_N_BAUD"} = int shift; update_DCB ($self); } return unless fetch_DCB ($self); return $self->{BAUD}; } sub are_baudrate { my $self = shift; return unless $self->{"_C_BAUD"}; return if (@_); return keys(%{$self->{"_L_BAUD"}}); } sub is_parity { my $self = shift; if (@_) { return unless $self->{"_C_PARITY_CFG"}; return unless (defined $self->{"_L_PARITY"}{$_[0]}); $self->{"_N_PARITY"} = $self->{"_L_PARITY"}{$_[0]}; update_DCB ($self); } return unless fetch_DCB ($self); return $self->{PARITY}; } sub are_parity { my $self = shift; return unless $self->{"_C_PARITY_CFG"}; return if (@_); return keys(%{$self->{"_L_PARITY"}}); } sub is_databits { my $self = shift; if (@_) { return unless $self->{"_C_DATA"}; return unless (defined $self->{"_L_DATA"}{$_[0]}); $self->{"_N_DATA"} = $self->{"_L_DATA"}{$_[0]}; update_DCB ($self); } return unless fetch_DCB ($self); return $self->{DATA}; } sub are_databits { my $self = shift; return unless $self->{"_C_DATA"}; return if (@_); return keys(%{$self->{"_L_DATA"}}); } sub is_stopbits { my $self = shift; if (@_) { return unless $self->{"_C_STOP"}; return unless (defined $self->{"_L_STOP"}{$_[0]}); $self->{"_N_STOP"} = $self->{"_L_STOP"}{$_[0]}; update_DCB ($self); } return unless fetch_DCB ($self); return $self->{STOP}; } sub are_stopbits { my $self = shift; return unless $self->{"_C_STOP"}; return if (@_); return keys(%{$self->{"_L_STOP"}}); } # single value for save/start sub is_read_buf { my $self = shift; if (@_) { $self->{"_N_READBUF"} = int shift; } return $self->{READBUF}; } # single value for save/start sub is_write_buf { my $self = shift; if (@_) { $self->{"_N_WRITEBUF"} = int shift; } return $self->{WRITEBUF}; } sub is_buffers { my $self = shift; return unless (@_ == 2); my $rbuf = shift; my $wbuf = shift; SetupComm($self->{"_HANDLE"}, $rbuf, $wbuf) or return; $self->{"_N_READBUF"} = 0; $self->{"_N_WRITEBUF"} = 0; $self->{READBUF} = $rbuf; $self->{WRITEBUF} = $wbuf; 1; } sub read_bg { return unless (@_ == 2); my $self = shift; my $wanted = shift; return unless ($wanted > 0); if ($self->{"_R_BUSY"}) { nocarp or carp "Second Read attempted before First is done"; return; } my $got_p = " "x4; my $ok; my $got = 0; if ($wanted > $RBUF_Size) { $wanted = $RBUF_Size; warn "read buffer limited to $RBUF_Size bytes at the moment"; } $self->{"_R_BUSY"} = 1; $ok=ReadFile( $self->{"_HANDLE"}, $self->{"_RBUF"}, $wanted, $got_p, $self->{"_R_OVERLAP"}); if ($ok) { $got = unpack("L", $got_p); $self->{"_R_BUSY"} = 0; } return $got; } sub write_bg { return unless (@_ == 2); my $self = shift; my $wbuf = shift; if ($self->{"_W_BUSY"}) { nocarp or carp "Second Write attempted before First is done"; return; } my $ok; my $got_p = " "x4; return 0 if ($wbuf eq ""); my $lbuf = length ($wbuf); my $written = 0; $self->{"_W_BUSY"} = 1; $ok=WriteFile( $self->{"_HANDLE"}, $wbuf, $lbuf, $got_p, $self->{"_W_OVERLAP"}); if ($ok) { $written = unpack("L", $got_p); $self->{"_W_BUSY"} = 0; } if ($Babble) { print "error=$ok\n"; print "wbuf=$wbuf\n"; print "lbuf=$lbuf\n"; print "write_bg=$written\n"; } return $written; } sub read_done { return unless (@_ == 2); my $self = shift; my $wait = yes_true ( shift ); my $ov; my $got_p = " "x4; my $wanted = 0; $self->{"_R_BUSY"} = 1; $ov=GetOverlappedResult( $self->{"_HANDLE"}, $self->{"_R_OVERLAP"}, $got_p, $wait); if ($ov) { $wanted = unpack("L", $got_p); $self->{"_R_BUSY"} = 0; print "read_done=$wanted\n" if ($Babble); return (1, $wanted, substr($self->{"_RBUF"}, 0, $wanted)); } return (0, 0, ""); } sub write_done { return unless (@_ == 2); my $self = shift; my $wait = yes_true ( shift ); my $ov; my $got_p = " "x4; my $written = 0; $self->{"_W_BUSY"} = 1; $ov=GetOverlappedResult( $self->{"_HANDLE"}, $self->{"_W_OVERLAP"}, $got_p, $wait); if ($ov) { $written = unpack("L", $got_p); $self->{"_W_BUSY"} = 0; print "write_done=$written\n" if ($Babble); return (1, $written); } return (0, $written); } sub purge_all { my $self = shift; return if (@_); # PURGE_TXABORT | PURGE_RXABORT | PURGE_TXCLEAR | PURGE_RXCLEAR unless ( PurgeComm($self->{"_HANDLE"}, 0x0000000f) ) { carp "Error in PurgeComm"; OS_Error; return; } $self->{"_R_BUSY"} = 0; $self->{"_W_BUSY"} = 0; return 1; } sub purge_rx { my $self = shift; return if (@_); # PURGE_RXABORT | PURGE_RXCLEAR unless ( PurgeComm($self->{"_HANDLE"}, 0x0000000a) ) { OS_Error; carp "Error in PurgeComm"; return; } $self->{"_R_BUSY"} = 0; return 1; } sub purge_tx { my $self = shift; return if (@_); # PURGE_TXABORT | PURGE_TXCLEAR unless ( PurgeComm($self->{"_HANDLE"}, 0x00000005) ) { OS_Error; carp "Error in PurgeComm"; return; } $self->{"_W_BUSY"} = 0; return 1; } sub are_buffers { my $self = shift; return if (@_); return ($self->{READBUF}, $self->{WRITEBUF}); } sub buffer_max { my $self = shift; return if (@_); return ($self->{"_RBUFMAX"}, $self->{"_TBUFMAX"}); } sub suspend_tx { my $self = shift; return if (@_); return SetCommBreak($self->{"_HANDLE"}); } sub resume_tx { my $self = shift; return if (@_); return ClearCommBreak($self->{"_HANDLE"}); } sub xmit_imm_char { my $self = shift; return unless (@_ == 1); my $v = int shift; unless ( TransmitCommChar($self->{"_HANDLE"}, $v) ) { carp "Can't transmit char: $v"; return; } 1; } sub is_xon_char { my $self = shift; if ((@_ == 1) and $self->{"_C_XON_CHAR"}) { $self->{"_N_XONCHAR"} = 1 + shift; update_DCB ($self); } else { return unless fetch_DCB ($self); } return $self->{XONCHAR}; } sub is_xoff_char { my $self = shift; if ((@_ == 1) and $self->{"_C_XON_CHAR"}) { $self->{"_N_XOFFCHAR"} = 1 + shift; update_DCB ($self); } else { return unless fetch_DCB ($self); } return $self->{XOFFCHAR}; } sub is_eof_char { my $self = shift; if ((@_ == 1) and $self->{"_C_SPECHAR"}) { $self->{"_N_EOFCHAR"} = 1 + shift; update_DCB ($self); } else { return unless fetch_DCB ($self); } return $self->{EOFCHAR}; } sub is_event_char { my $self = shift; if ((@_ == 1) and $self->{"_C_SPECHAR"}) { $self->{"_N_EVTCHAR"} = 1 + shift; update_DCB ($self); } else { return unless fetch_DCB ($self); } return $self->{EVTCHAR}; } sub is_error_char { my $self = shift; if ((@_ == 1) and $self->{"_C_SPECHAR"}) { $self->{"_N_ERRCHAR"} = 1 + shift; update_DCB ($self); } else { return unless fetch_DCB ($self); } return $self->{ERRCHAR}; } sub is_xon_limit { my $self = shift; if (@_) { return unless ($self->{"_C_XONXOFF"}); my $v = int shift; return if (($v < 0) or ($v > SHORTsize)); $self->{"_N_XONLIM"} = ++$v; update_DCB ($self); } else { return unless fetch_DCB ($self); } return $self->{XONLIM}; } sub is_xoff_limit { my $self = shift; if (@_) { return unless ($self->{"_C_XONXOFF"}); my $v = int shift; return if (($v < 0) or ($v > SHORTsize)); $self->{"_N_XOFFLIM"} = ++$v; update_DCB ($self); } else { return unless fetch_DCB ($self); } return $self->{XOFFLIM}; } sub is_read_interval { my $self = shift; if (@_) { return unless ($self->{"_C_INT_TIME"}); my $v = int shift; return if (($v < 0) or ($v > LONGsize)); if ($v == LONGsize) { $self->{"_N_RINT"} = $v; # Win32 uses as flag } else { $self->{"_N_RINT"} = ++$v; } return unless update_timeouts ($self); } return $self->{RINT}; } sub is_read_char_time { my $self = shift; if (@_) { return unless ($self->{"_C_TOT_TIME"}); my $v = int shift; return if (($v < 0) or ($v >= LONGsize)); $self->{"_N_RTOT"} = ++$v; return unless update_timeouts ($self); } return $self->{RTOT}; } sub is_read_const_time { my $self = shift; if (@_) { return unless ($self->{"_C_TOT_TIME"}); my $v = int shift; return if (($v < 0) or ($v >= LONGsize)); $self->{"_N_RCONST"} = ++$v; return unless update_timeouts ($self); } return $self->{RCONST}; } sub is_write_const_time { my $self = shift; if (@_) { return unless ($self->{"_C_TOT_TIME"}); my $v = int shift; return if (($v < 0) or ($v >= LONGsize)); $self->{"_N_WCONST"} = ++$v; return unless update_timeouts ($self); } return $self->{WCONST}; } sub is_write_char_time { my $self = shift; if (@_) { return unless ($self->{"_C_TOT_TIME"}); my $v = int shift; return if (($v < 0) or ($v >= LONGsize)); $self->{"_N_WTOT"} = ++$v; return unless update_timeouts ($self); } return $self->{WTOT}; } sub update_timeouts { return unless (@_ == 1); my $self = shift; unless ( GetCommTimeouts($self->{"_HANDLE"}, $self->{"_TIMEOUT"}) ) { carp "Error in GetCommTimeouts"; return; } ($self->{RINT}, $self->{RTOT}, $self->{RCONST}, $self->{WTOT}, $self->{WCONST})= unpack($TIMEOUTformat, $self->{"_TIMEOUT"}); if ($self->{"_N_RINT"}) { if ($self->{"_N_RINT"} == LONGsize) { $self->{RINT} = $self->{"_N_RINT"}; # Win32 uses as flag } else { $self->{RINT} = $self->{"_N_RINT"} -1; } $self->{"_N_RINT"} = 0; } if ($self->{"_N_RTOT"}) { $self->{RTOT} = $self->{"_N_RTOT"} -1; $self->{"_N_RTOT"} = 0; } if ($self->{"_N_RCONST"}) { $self->{RCONST} = $self->{"_N_RCONST"} -1; $self->{"_N_RCONST"} = 0; } if ($self->{"_N_WTOT"}) { $self->{WTOT} = $self->{"_N_WTOT"} -1; $self->{"_N_WTOT"} = 0; } if ($self->{"_N_WCONST"}) { $self->{WCONST} = $self->{"_N_WCONST"} -1; $self->{"_N_WCONST"} = 0; } $self->{"_TIMEOUT"} = pack($TIMEOUTformat, $self->{RINT}, $self->{RTOT}, $self->{RCONST}, $self->{WTOT}, $self->{WCONST}); if ( SetCommTimeouts($self->{"_HANDLE"}, $self->{"_TIMEOUT"}) ) { return 1; } else { carp "Error in SetCommTimeouts"; return; } } # true/false parameters sub is_binary { my $self = shift; if (@_) { $self->{"_N_BINARY"} = 1 + yes_true ( shift ); update_DCB ($self); } else { return unless fetch_DCB ($self); } ### printf "_BitMask=%lx\n", $self->{"_BitMask"}; ### return ($self->{"_BitMask"} & FM_fBinary); } sub is_parity_enable { my $self = shift; if (@_) { $self->{"_N_PARITY_EN"} = 1 + yes_true ( shift ); update_DCB ($self); } return unless fetch_DCB ($self); ## printf "_BitMask=%lx\n", $self->{"_BitMask"}; ## DEBUG ## return ($self->{"_BitMask"} & FM_fParity); } sub ignore_null { my $self = shift; if (@_) { if ($self->{"_N_AUX_OFF"}) { $self->{"_N_AUX_OFF"} &= ~FM_fNull; } else { $self->{"_N_AUX_OFF"} = ~FM_fNull; } if ( yes_true ( shift ) ) { $self->{"_N_AUX_ON"} |= FM_fNull; } update_DCB ($self); } else { return unless fetch_DCB ($self); } ## printf "_BitMask=%lx\n", $self->{"_BitMask"}; ### return ($self->{"_BitMask"} & FM_fNull); } sub ignore_no_dsr { my $self = shift; if (@_) { if ($self->{"_N_AUX_OFF"}) { $self->{"_N_AUX_OFF"} &= ~FM_fDsrSensitivity; } else { $self->{"_N_AUX_OFF"} = ~FM_fDsrSensitivity; } if ( yes_true ( shift ) ) { $self->{"_N_AUX_ON"} |= FM_fDsrSensitivity; } update_DCB ($self); } else { return unless fetch_DCB ($self); } ## printf "_BitMask=%lx\n", $self->{"_BitMask"}; ### return ($self->{"_BitMask"} & FM_fDsrSensitivity); } sub subst_pe_char { my $self = shift; if (@_) { if ($self->{"_N_AUX_OFF"}) { $self->{"_N_AUX_OFF"} &= ~FM_fErrorChar; } else { $self->{"_N_AUX_OFF"} = ~FM_fErrorChar; } if ( yes_true ( shift ) ) { $self->{"_N_AUX_ON"} |= FM_fErrorChar; } update_DCB ($self); } else { return unless fetch_DCB ($self); } ## printf "_BitMask=%lx\n", $self->{"_BitMask"}; ### return ($self->{"_BitMask"} & FM_fErrorChar); } sub abort_on_error { my $self = shift; if (@_) { if ($self->{"_N_AUX_OFF"}) { $self->{"_N_AUX_OFF"} &= ~FM_fAbortOnError; } else { $self->{"_N_AUX_OFF"} = ~FM_fAbortOnError; } if ( yes_true ( shift ) ) { $self->{"_N_AUX_ON"} |= FM_fAbortOnError; } update_DCB ($self); } else { return unless fetch_DCB ($self); } ## printf "_BitMask=%lx\n", $self->{"_BitMask"}; ### return ($self->{"_BitMask"} & FM_fAbortOnError); } sub output_dsr { my $self = shift; if (@_) { if ($self->{"_N_AUX_OFF"}) { $self->{"_N_AUX_OFF"} &= ~FM_fOutxDsrFlow; } else { $self->{"_N_AUX_OFF"} = ~FM_fOutxDsrFlow; } if ( yes_true ( shift ) ) { $self->{"_N_AUX_ON"} |= FM_fOutxDsrFlow; } update_DCB ($self); } else { return unless fetch_DCB ($self); } ## printf "_BitMask=%lx\n", $self->{"_BitMask"}; ### return ($self->{"_BitMask"} & FM_fOutxDsrFlow); } sub output_cts { my $self = shift; if (@_) { if ($self->{"_N_AUX_OFF"}) { $self->{"_N_AUX_OFF"} &= ~FM_fOutxCtsFlow; } else { $self->{"_N_AUX_OFF"} = ~FM_fOutxCtsFlow; } if ( yes_true ( shift ) ) { $self->{"_N_AUX_ON"} |= FM_fOutxCtsFlow; } update_DCB ($self); } else { return unless fetch_DCB ($self); } ## printf "_BitMask=%lx\n", $self->{"_BitMask"}; ### return ($self->{"_BitMask"} & FM_fOutxCtsFlow); } sub input_xoff { my $self = shift; if (@_) { if ($self->{"_N_AUX_OFF"}) { $self->{"_N_AUX_OFF"} &= ~FM_fInX; } else { $self->{"_N_AUX_OFF"} = ~FM_fInX; } if ( yes_true ( shift ) ) { $self->{"_N_AUX_ON"} |= FM_fInX; } update_DCB ($self); } else { return unless fetch_DCB ($self); } ## printf "_BitMask=%lx\n", $self->{"_BitMask"}; ### return ($self->{"_BitMask"} & FM_fInX); } sub output_xoff { my $self = shift; if (@_) { if ($self->{"_N_AUX_OFF"}) { $self->{"_N_AUX_OFF"} &= ~FM_fOutX; } else { $self->{"_N_AUX_OFF"} = ~FM_fOutX; } if ( yes_true ( shift ) ) { $self->{"_N_AUX_ON"} |= FM_fOutX; } update_DCB ($self); } else { return unless fetch_DCB ($self); } ## printf "_BitMask=%lx\n", $self->{"_BitMask"}; ### return ($self->{"_BitMask"} & FM_fOutX); } sub tx_on_xoff { my $self = shift; if (@_) { if ($self->{"_N_AUX_OFF"}) { $self->{"_N_AUX_OFF"} &= ~FM_fTXContinueOnXoff; } else { $self->{"_N_AUX_OFF"} = ~FM_fTXContinueOnXoff; } if ( yes_true ( shift ) ) { $self->{"_N_AUX_ON"} |= FM_fTXContinueOnXoff; } update_DCB ($self); } else { return unless fetch_DCB ($self); } ## printf "_BitMask=%lx\n", $self->{"_BitMask"}; ### return ($self->{"_BitMask"} & FM_fTXContinueOnXoff); } sub dtr_active { return unless (@_ == 2); my $self = shift; my $onoff = yes_true ( shift ) ? SETDTR : CLRDTR ; return EscapeCommFunction($self->{"_HANDLE"}, $onoff); } sub rts_active { return unless (@_ == 2); my $self = shift; my $onoff = yes_true ( shift ) ? SETRTS : CLRRTS ; return EscapeCommFunction($self->{"_HANDLE"}, $onoff); } # pulse parameters sub pulse_dtr_off { return unless (@_ == 2); my $self = shift; my $delay = shift; $self->dtr_active(0) or carp "Did not pulse DTR off"; Win32::Sleep($delay); $self->dtr_active(1) or carp "Did not restore DTR on"; Win32::Sleep($delay); } sub pulse_rts_off { return unless (@_ == 2); my $self = shift; my $delay = shift; $self->rts_active(0) or carp "Did not pulse RTS off"; Win32::Sleep($delay); $self->rts_active(1) or carp "Did not restore RTS on"; Win32::Sleep($delay); } sub pulse_break_on { return unless (@_ == 2); my $self = shift; my $delay = shift; $self->break_active(1) or carp "Did not pulse BREAK on"; Win32::Sleep($delay); $self->break_active(0) or carp "Did not restore BREAK off"; Win32::Sleep($delay); } sub pulse_dtr_on { return unless (@_ == 2); my $self = shift; my $delay = shift; $self->dtr_active(1) or carp "Did not pulse DTR on"; Win32::Sleep($delay); $self->dtr_active(0) or carp "Did not restore DTR off"; Win32::Sleep($delay); } sub pulse_rts_on { return unless (@_ == 2); my $self = shift; my $delay = shift; $self->rts_active(1) or carp "Did not pulse RTS on"; Win32::Sleep($delay); $self->rts_active(0) or carp "Did not restore RTS off"; Win32::Sleep($delay); } sub break_active { return unless (@_ == 2); my $self = shift; my $onoff = yes_true ( shift ) ? SETBREAK : CLRBREAK ; return EscapeCommFunction($self->{"_HANDLE"}, $onoff); } sub xon_active { return unless (@_ == 1); my $self = shift; return EscapeCommFunction($self->{"_HANDLE"}, SETXON); } sub xoff_active { return unless (@_ == 1); my $self = shift; return EscapeCommFunction($self->{"_HANDLE"}, SETXOFF); } sub is_modemlines { return unless (@_ == 1); my $self = shift; my $mstat = " " x4; unless ( GetCommModemStatus($self->{"_HANDLE"}, $mstat) ) { carp "Error in GetCommModemStatus"; return; } my $result = unpack ("L", $mstat); return $result; } sub debug_comm { my $self = shift; if (ref($self)) { if (@_) { $self->{"_DEBUG_C"} = yes_true ( shift ); } else { nocarp or carp "Debug level: $self->{NAME} = $self->{\"_DEBUG_C\"}"; return $self->{"_DEBUG_C"}; } } else { $Babble = yes_true ($self); nocarp or carp "CommPort Debug Class = $Babble"; return $Babble; } } sub close { my $self = shift; my $ok; my $success = 1; return unless (defined $self->{NAME}); if ($Babble) { carp "Closing $self " . $self->{NAME}; } if ($self->{"_HANDLE"}) { purge_all ($self); update_timeouts ($self); # if any running ?? $ok=CloseHandle($self->{"_HANDLE"}); if (! $ok) { print "Error Closing handle $self->{\"_HANDLE\"} for $self->{NAME}\n"; OS_Error; $success = 0; } elsif ($Babble) { print "Closing Device handle $self->{\"_HANDLE\"} for $self->{NAME}\n"; } $self->{"_HANDLE"} = undef; } if ($self->{"_R_EVENT"}) { $ok=CloseHandle($self->{"_R_EVENT"}); if (! $ok) { print "Error closing Read Event handle $self->{\"_R_EVENT\"} for $self->{NAME}\n"; OS_Error; $success = 0; } $self->{"_R_EVENT"} = undef; } if ($self->{"_W_EVENT"}) { $ok=CloseHandle($self->{"_W_EVENT"}); if (! $ok) { print "Error closing Write Event handle $self->{\"_W_EVENT\"} for $self->{NAME}\n"; OS_Error; $success = 0; } $self->{"_W_EVENT"} = undef; } $self->{NAME} = undef; if ($Babble) { printf "CommPort close result:%d\n", $success; } return $success; } sub DESTROY { my $self = shift; return unless (defined $self->{NAME}); if ($Babble or $self->{"_DEBUG_C"}) { print "Destroying $self->{NAME}\n" if (defined $self->{NAME}); } $self->close; } 1; # so the require or use succeeds # Autoload methods go after =cut, and are processed by the autosplit program. __END__ =pod =head1 NAME Win32API::CommPort - Raw Win32 system API calls for serial communications. =head1 SYNOPSIS use Win32; ## not required under all circumstances require 5.006; use Win32API::CommPort qw( :PARAM :STAT 0.20 ); ## when available ## use Win32API::File 0.07 qw( :ALL ); =head2 Constructors $PortObj = new Win32API::CommPort ($PortName, $quiet) || die "Can't open $PortName: $^E\n"; # $quiet is optional @required = qw( BAUD DATA STOP ); $faults = $PortObj->initialize(@required); if ($faults) { die "Required parameters not set before initialize\n"; } =head2 Configuration Utility Methods set_no_messages(1); # test suite use # exported by :PARAM nocarp || carp "Something fishy"; $a = SHORTsize; # 0xffff $a = LONGsize; # 0xffffffff $answer = yes_true("choice"); # 1 or 0 OS_Error unless ($API_Call_OK); # prints error $PortObj->init_done || die "Not done"; $PortObj->fetch_DCB || die "Not done"; $PortObj->update_DCB || die "Not done"; $milliseconds = $PortObj->get_tick_count; =head2 Capability Methods (read only) # true/false capabilities $a = $PortObj->can_baud; # else fixed $a = $PortObj->can_databits; $a = $PortObj->can_stopbits; $a = $PortObj->can_dtrdsr; $a = $PortObj->can_handshake; $a = $PortObj->can_parity_check; $a = $PortObj->can_parity_config; $a = $PortObj->can_parity_enable; $a = $PortObj->can_rlsd; # receive line signal detect (carrier) $a = $PortObj->can_rlsd_config; $a = $PortObj->can_16bitmode; $a = $PortObj->can_ioctl; # false, unix only $a = $PortObj->is_rs232; $a = $PortObj->is_modem; $a = $PortObj->can_rtscts; $a = $PortObj->can_xonxoff; $a = $PortObj->can_xon_char; $a = $PortObj->can_spec_char; $a = $PortObj->can_interval_timeout; $a = $PortObj->can_total_timeout; # list output capabilities ($rmax, $wmax) = $PortObj->buffer_max; ($rbuf, $wbuf) = $PortObj->are_buffers; # current @choices = $PortObj->are_baudrate; # legal values @choices = $PortObj->are_handshake; @choices = $PortObj->are_parity; @choices = $PortObj->are_databits; @choices = $PortObj->are_stopbits; =head2 Configuration Methods # most methods can be called two ways: $PortObj->is_handshake("xoff"); # set parameter $flowcontrol = $PortObj->is_handshake; # current value (scalar) # similar $PortObj->is_baudrate(9600); $PortObj->is_parity("odd"); $PortObj->is_databits(8); $PortObj->is_stopbits(1); $PortObj->debug_comm(0); $PortObj->is_xon_limit(100); # bytes left in buffer $PortObj->is_xoff_limit(100); # space left in buffer $PortObj->is_xon_char(0x11); $PortObj->is_xoff_char(0x13); $PortObj->is_eof_char(0x0); $PortObj->is_event_char(0x0); $PortObj->is_error_char(0); # for parity errors $rbuf = $PortObj->is_read_buf; # read_only except internal use $wbuf = $PortObj->is_write_buf; $size = $PortObj->internal_buffer; $PortObj->is_buffers(4096, 4096); # read, write # returns current in list context $PortObj->is_read_interval(100); # max time between read char (millisec) $PortObj->is_read_char_time(5); # avg time between read char $PortObj->is_read_const_time(100); # total = (avg * bytes) + const $PortObj->is_write_char_time(5); $PortObj->is_write_const_time(100); $PortObj->is_binary(T); # just say Yes (Win 3.x option) $PortObj->is_parity_enable(F); # faults during input =head2 Operating Methods ($BlockingFlags, $InBytes, $OutBytes, $LatchErrorFlags) = $PortObj->is_status || warn "could not get port status\n"; $ClearedErrorFlags = $PortObj->reset_error; # The API resets errors when reading status, $LatchErrorFlags # is all $ErrorFlags since they were last explicitly cleared if ($BlockingFlags) { warn "Port is blocked"; } if ($BlockingFlags & BM_fCtsHold) { warn "Waiting for CTS"; } if ($LatchErrorFlags & CE_FRAME) { warn "Framing Error"; } Additional useful constants may be exported eventually. $count_in = $PortObj->read_bg($InBytes); ($done, $count_in, $string_in) = $PortObj->read_done(1); # background read with wait until done $count_out = $PortObj->write_bg($output_string); # background write ($done, $count_out) = $PortObj->write_done(0); $PortObj->suspend_tx; # output from write buffer $PortObj->resume_tx; $PortObj->xmit_imm_char(0x03); # bypass buffer (and suspend) $PortObj->xoff_active; # simulate received xoff $PortObj->xon_active; # simulate received xon $PortObj->purge_all; $PortObj->purge_rx; $PortObj->purge_tx; # controlling outputs from the port $PortObj->dtr_active(T); # sends outputs direct to hardware $PortObj->rts_active(Yes); # returns status of API call $PortObj->break_active(N); # NOT state of bit $PortObj->pulse_break_on($milliseconds); # off version is implausible $PortObj->pulse_rts_on($milliseconds); $PortObj->pulse_rts_off($milliseconds); $PortObj->pulse_dtr_on($milliseconds); $PortObj->pulse_dtr_off($milliseconds); # sets_bit, delays, resets_bit, delays $ModemStatus = $PortObj->is_modemlines; if ($ModemStatus & $PortObj->MS_RLSD_ON) { print "carrier detected"; } $PortObj->close || die; # "undef $PortObj" preferred unless reopening port # "close" should precede "undef" if both used =head1 DESCRIPTION This provides fairly low-level access to the Win32 System API calls dealing with serial ports. Uses features of the Win32 API to implement non-blocking I/O, serial parameter setting, event-loop operation, and enhanced error handling. To pass in C<NULL> as the pointer to an optional buffer, pass in C<$null=0>. This is expected to change to an empty list reference, C<[]>, when Perl supports that form in this usage. Beyond raw access to the API calls and related constants, this module will eventually handle smart buffer allocation and translation of return codes. =head2 Initialization The constructor is B<new> with a F<PortName> (as the Registry knows it) specified. This will do a B<CreateFile>, get the available options and capabilities via the Win32 API, and create the object. The port is not yet ready for read/write access. First, the desired I<parameter settings> must be established. Since these are tuning constants for an underlying hardware driver in the Operating System, they should all checked for validity by the method calls that set them. The B<initialize> method takes a list of required parameters and confirms they have been set. For others, it will attempt to deduce defaults from the hardware or from other parameters. The B<initialize> method returns the number of faults (zero if the port is setup ok). The B<update_DCB> method writes a new I<Device Control Block> to complete the startup and allow the port to be used. Ports are opened for binary transfers. A separate C<binmode> is not needed. The USER must release the object if B<initialize> or B<update_DCB> does not succeed. Version 0.15 adds an optional C<$quiet> parameter to B<new>. Failure to open a port prints a error message to STDOUT by default. Since only one application at a time can "own" the port, one source of failure was "port in use". There was previously no way to check this without getting a "fail message". Setting C<$quiet> disables this built-in message. It also returns 0 instead of C<undef> if the port is unavailable (still FALSE, used for testing this condition - other faults may still return C<undef>). Use of C<$quiet> only applies to B<new>. The fault checking in B<initialize> consists in verifying an I<_N_$item> internal variable exists for each I<$item> in the input list. The I<_N_$item> is created for each parameter that is set either directly or by default. A derived class must create the I<_N_$items> for any varibles it adds to the base class if it wants B<initialize> to check them. Win32API::CommPort supports the following: $item _N_$item setting method ------ --------- -------------- BAUD "_N_BAUD" is_baudrate BINARY "_N_BINARY" is_binary DATA "_N_DATA" is_databits EOFCHAR "_N_EOFCHAR" is_eof_char ERRCHAR "_N_ERRCHAR" is_error_char EVTCHAR "_N_EVTCHAR" is_event_char HSHAKE "_N_HSHAKE" is_handshake PARITY "_N_PARITY" is_parity PARITY_EN "_N_PARITY_EN" is_parity_enable RCONST "_N_RCONST" is_read_const_time READBUF "_N_READBUF" is_read_buf RINT "_N_RINT" is_read_interval RTOT "_N_RTOT" is_read_char_time STOP "_N_STOP" is_stopbits WCONST "_N_WCONST" is_write_const_time WRITEBUF "_N_WRITEBUF" is_write_buf WTOT "_N_WTOT" is_write_char_time XOFFCHAR "_N_XOFFCHAR" is_xoff_char XOFFLIM "_N_XOFFLIM" is_xoff_limit XONCHAR "_N_XONCHAR" is_xon_char XONLIM "_N_XONLIM" is_xon_limit Some individual parameters (eg. baudrate) can be changed after the initialization is completed. These will automatically update the I<Device Control Block> as required. The I<init_done> method indicates when I<initialize> has completed successfully. $PortObj = new Win32API::CommPort ($PortName, $quiet) || die "Can't open $PortName: $^E\n"; # $quiet is optional if $PortObj->can_databits { $PortObj->is_databits(8) }; $PortObj->is_baudrate(9600); $PortObj->is_parity("none"); $PortObj->is_stopbits(1); $PortObj->is_handshake("rts"); $PortObj->is_buffers(4096, 4096); $PortObj->dtr_active(T); @required = qw( BAUD DATA STOP PARITY ); $PortObj->initialize(@required) || undef $PortObj; $PortObj->dtr_active(f); $PortObj->is_baudrate(300); $PortObj->close || die; # "undef $PortObj" preferred unless reopening port # "close" should precede "undef" if both used undef $PortObj; # closes port AND frees memory in perl The F<PortName> maps to both the Registry I<Device Name> and the I<Properties> associated with that device. A single I<Physical> port can be accessed using two or more I<Device Names>. But the options and setup data will differ significantly in the two cases. A typical example is a Modem on port "COM2". Both of these F<PortNames> open the same I<Physical> hardware: $P1 = new Win32API::CommPort ("COM2"); $P2 = new Win32API::CommPort ("\\\\.\\Nanohertz Modem model K-9"); $P1 is a "generic" serial port. $P2 includes all of $P1 plus a variety of modem-specific added options and features. The "raw" API calls return different size configuration structures in the two cases. Win32 uses the "\\.\" prefix to identify "named" devices. Since both names use the same I<Physical> hardware, they can not both be used at the same time. The OS will complain. Consider this A Good Thing. Version 0.16 adds B<pulse> methods for the I<RTS, BREAK, and DTR> bits. The B<pulse> methods assume the bit is in the opposite state when the method is called. They set the requested state, delay the specified number of milliseconds, set the opposite state, and again delay the specified time. These methods are designed to support devices, such as the X10 "FireCracker" control and some modems, which require pulses on these lines to signal specific events or data. $PortObj->pulse_break_on($milliseconds); $PortObj->pulse_rts_on($milliseconds); $PortObj->pulse_rts_off($milliseconds); $PortObj->pulse_dtr_on($milliseconds); $PortObj->pulse_dtr_off($milliseconds); Version 0.16 also adds I<experimental> support for the rest of the option bits available through the I<Device Control Block>. They have not been extensively tested and these settings are NOT saved in the B<configuration file> by I<Win32::SerialPort>. Please let me know if one does not work as advertised. [Win32 API bit designation] $PortObj->ignore_null(0); # discard \000 bytes on input [fNull] $PortObj->ignore_no_dsr(0); # discard input bytes unless DSR # [fDsrSensitivity] $PortObj->subst_pe_char(0); # replace parity errors with B<is_error_char> # when B<is_parity_enable> [fErrorChar] $PortObj->abort_on_error(0); # cancel read/write [fAbortOnError] # next one set by $PortObj->is_handshake("dtr"); $PortObj->output_dsr(0); # use DSR handshake on output [fOutxDsrFlow] # next one set by $PortObj->is_handshake("rts"); $PortObj->output_cts(0); # use CTS handshake on output [fOutxCtsFlow] # next two set by $PortObj->is_handshake("xoff"); $PortObj->input_xoff(0); # use Xon/Xoff handshake on input [fInX] $PortObj->output_xoff(0); # use Xon/Xoff handshake on output [fOutX] $PortObj->tx_on_xoff(0); # continue output even after input xoff sent # [fTXContinueOnXoff] The B<get_tick_count> method is a wrapper around the I<Win32::GetTickCount()> function. It matches a corresponding method in I<Device::SerialPort> which does not have access to the I<Win32::> namespace. It still returns time in milliseconds - but can be used in cross-platform scripts. =head2 Configuration and Capability Methods The Win32 Serial Comm API provides extensive information concerning the capabilities and options available for a specific port (and instance). "Modem" ports have different capabilties than "RS-232" ports - even if they share the same Hardware. Many traditional modem actions are handled via TAPI. "Fax" ports have another set of options - and are accessed via MAPI. Yet many of the same low-level API commands and data structures are "common" to each type ("Modem" is implemented as an "RS-232" superset). In addition, Win95 supports a variety of legacy hardware (e.g fixed 134.5 baud) while WinNT has hooks for ISDN, 16-data-bit paths, and 256Kbaud. =over 8 Binary selections will accept as I<true> any of the following: C<("YES", "Y", "ON", "TRUE", "T", "1", 1)> (upper/lower/mixed case) Anything else is I<false>. There are a large number of possible configuration and option parameters. To facilitate checking option validity in scripts, most configuration methods can be used in two different ways: =item method called with an argument The parameter is set to the argument, if valid. An invalid argument returns I<false> (undef) and the parameter is unchanged. After B<init_done>, the port will be updated immediately if allowed. Otherwise, the value will be applied when B<update_DCB> is called. =item method called with no argument in scalar context The current value is returned. If the value is not initialized either directly or by default, return "undef" which will parse to I<false>. For binary selections (true/false), return the current value. All current values from "multivalue" selections will parse to I<true>. Current values may differ from requested values until B<init_done>. There is no way to see requests which have not yet been applied. Setting the same parameter again overwrites the first request. Test the return value of the setting method to check "success". =item Asynchronous (Background) I/O This version now handles Polling (do if Ready), Synchronous (block until Ready), and Asynchronous Modes (begin and test if Ready) with the timeout choices provided by the API. No effort has yet been made to interact with Windows events. But background I/O has been used successfully with the Perl Tk modules and callbacks from the event loop. =item Timeouts The API provides two timing models. The first applies only to reading and essentially determines I<Read Not Ready> by checking the time between consecutive characters. The B<ReadFile> operation returns if that time exceeds the value set by B<is_read_interval>. It does this by timestamping each character. It appears that at least one character must by received in I<every> B<read> I<call to the API> to initialize the mechanism. The timer is then reset by each succeeding character. If no characters are received, the read will block indefinitely. Setting B<is_read_interval> to C<0xffffffff> will do a non-blocking read. The B<ReadFile> returns immediately whether or not any characters are actually read. This replicates the behavior of the API. The other model defines the total time allowed to complete the operation. A fixed overhead time is added to the product of bytes and per_byte_time. A wide variety of timeout options can be defined by selecting the three parameters: fixed, each, and size. Read_Total = B<is_read_const_time> + (B<is_read_char_time> * bytes_to_read) Write_Total = B<is_write_const_time> + (B<is_write_char_time> * bytes_to_write) When reading a known number of characters, the I<Read_Total> mechanism is recommended. This mechanism I<MUST> be used with I<Win32::SerialPort tied FileHandles> because the tie methods can make multiple internal API calls. The I<Read_Interval> mechanism is suitable for a B<read_bg> method that expects a response of variable or unknown size. You should then also set a long I<Read_Total> timeout as a "backup" in case no bytes are received. =back =head2 Exports Nothing is exported by default. The following tags can be used to have large sets of symbols exported: =over 4 =item :PARAM Utility subroutines and constants for parameter setting and test: LONGsize SHORTsize nocarp yes_true OS_Error internal_buffer =item :STAT Serial communications status constants. Included are the constants for ascertaining why a transmission is blocked: BM_fCtsHold BM_fDsrHold BM_fRlsdHold BM_fXoffHold BM_fXoffSent BM_fEof BM_fTxim BM_AllBits Which incoming bits are active: MS_CTS_ON MS_DSR_ON MS_RING_ON MS_RLSD_ON What hardware errors have been detected: CE_RXOVER CE_OVERRUN CE_RXPARITY CE_FRAME CE_BREAK CE_TXFULL CE_MODE Offsets into the array returned by B<status:> ST_BLOCK ST_INPUT ST_OUTPUT ST_ERROR =item :RAW The constants and wrapper methods for low-level API calls. Details of these methods may change with testing. Some may be inherited from Win32API::File when that becomes available. $result=ClearCommError($handle, $Error_BitMask_p, $CommStatus); $result=ClearCommBreak($handle); $result=SetCommBreak($handle); $result=GetCommModemStatus($handle, $ModemStatus); $result=GetCommProperties($handle, $CommProperties); $result=GetCommState($handle, $DCB_Buffer); $result=SetCommState($handle, $DCB_Buffer); $result=SetupComm($handle, $in_buf_size, $out_buf_size); $result=ReadFile($handle, $buffer, $wanted, $got, $template); $result=WriteFile($handle, $buffer, $size, $count, $template); $result=GetCommTimeouts($handle, $CommTimeOuts); $result=SetCommTimeouts($handle, $CommTimeOuts); $result=EscapeCommFunction($handle, $Func_ID); $result=GetCommConfig($handle, $CommConfig, $Size); $result=SetCommConfig($handle, $CommConfig, $Size); $result=PurgeComm($handle, $flags); $result=GetCommMask($handle, $Event_Bitmask); $result=SetCommMask($handle, $Event_Bitmask); $hEvent=CreateEvent($security, $reset_req, $initial, $name); $handle=CreateFile($file, $access, $share, $security, $creation, $flags, $template); $result=CloseHandle($handle); $result=ResetEvent($hEvent); $result=TransmitCommChar($handle, $char); $result=WaitCommEvent($handle, $Event_Bitmask, $lpOverlapped); $result=GetOverlappedResult($handle, $lpOverlapped, $count, $bool); Flags used by B<PurgeComm:> PURGE_TXABORT PURGE_RXABORT PURGE_TXCLEAR PURGE_RXCLEAR Function IDs used by EscapeCommFunction: SETXOFF SETXON SETRTS CLRRTS SETDTR CLRDTR SETBREAK CLRBREAK Events used by B<WaitCommEvent:> EV_RXCHAR EV_RXFLAG EV_TXEMPTY EV_CTS EV_DSR EV_RLSD EV_BREAK EV_ERR EV_RING EV_PERR EV_RX80FULL EV_EVENT1 EV_EVENT2 Errors specific to B<GetOverlappedResult:> ERROR_IO_INCOMPLETE ERROR_IO_PENDING =item :COMMPROP The constants for the I<CommProperties structure> returned by B<GetCommProperties>. Included mostly for completeness. BAUD_USER BAUD_075 BAUD_110 BAUD_134_5 BAUD_150 BAUD_300 BAUD_600 BAUD_1200 BAUD_1800 BAUD_2400 BAUD_4800 BAUD_7200 BAUD_9600 BAUD_14400 BAUD_19200 BAUD_38400 BAUD_56K BAUD_57600 BAUD_115200 BAUD_128K PST_FAX PST_LAT PST_MODEM PST_PARALLELPORT PST_RS232 PST_RS422 PST_X25 PST_NETWORK_BRIDGE PST_RS423 PST_RS449 PST_SCANNER PST_TCPIP_TELNET PST_UNSPECIFIED PCF_INTTIMEOUTS PCF_PARITY_CHECK PCF_16BITMODE PCF_DTRDSR PCF_SPECIALCHARS PCF_RLSD PCF_RTSCTS PCF_SETXCHAR PCF_TOTALTIMEOUTS PCF_XONXOFF SP_BAUD SP_DATABITS SP_HANDSHAKING SP_PARITY SP_RLSD SP_STOPBITS SP_SERIALCOMM SP_PARITY_CHECK DATABITS_5 DATABITS_6 DATABITS_7 DATABITS_8 DATABITS_16 DATABITS_16X STOPBITS_10 STOPBITS_15 STOPBITS_20 PARITY_SPACE PARITY_NONE PARITY_ODD PARITY_EVEN PARITY_MARK COMMPROP_INITIALIZED =item :DCB The constants for the I<Device Control Block> returned by B<GetCommState> and updated by B<SetCommState>. Again, included mostly for completeness. But there are some combinations of "FM_f" settings which are not currently supported by high-level commands. If you need one of those, please report the lack as a bug. CBR_110 CBR_300 CBR_600 CBR_1200 CBR_2400 CBR_4800 CBR_9600 CBR_14400 CBR_19200 CBR_38400 CBR_56000 CBR_57600 CBR_115200 CBR_128000 CBR_256000 DTR_CONTROL_DISABLE DTR_CONTROL_ENABLE DTR_CONTROL_HANDSHAKE RTS_CONTROL_DISABLE RTS_CONTROL_ENABLE RTS_CONTROL_HANDSHAKE RTS_CONTROL_TOGGLE EVENPARITY MARKPARITY NOPARITY ODDPARITY SPACEPARITY ONESTOPBIT ONE5STOPBITS TWOSTOPBITS FM_fBinary FM_fParity FM_fOutxCtsFlow FM_fOutxDsrFlow FM_fDtrControl FM_fDsrSensitivity FM_fTXContinueOnXoff FM_fOutX FM_fInX FM_fErrorChar FM_fNull FM_fRtsControl FM_fAbortOnError FM_fDummy2 =item :ALL All of the above. Except for the I<test suite>, there is not really a good reason to do this. =back =head1 NOTES The object returned by B<new> is NOT a I<Filehandle>. You will be disappointed if you try to use it as one. e.g. the following is WRONG!!____C<print $PortObj "some text";> I<Win32::SerialPort> supports accessing ports via I<Tied Filehandles>. An important note about Win32 filenames. The reserved device names such as C< COM1, AUX, LPT1, CON, PRN > can NOT be used as filenames. Hence I<"COM2.cfg"> would not be usable for B<$Configuration_File_Name>. This module uses Win32::API extensively. The raw API calls are B<very> unforgiving. You will certainly want to start perl with the B<-w> switch. If you can, B<use strict> as well. Try to ferret out all the syntax and usage problems BEFORE issuing the API calls (many of which modify tuning constants in hardware device drivers....not where you want to look for bugs). Thanks to Ken White for testing on NT. =head1 KNOWN LIMITATIONS The current version of the module has been designed for testing using the ActiveState and Core (GS 5.004_02) ports of Perl for Win32 without requiring a compiler or using XS. In every case, compatibility has been selected over performance. Since everything is (sometimes convoluted but still pure) Perl, you can fix flaws and change limits if required. But please file a bug report if you do. This module has been tested with each of the binary perl versions for which Win32::API is supported: AS builds 315, 316, and 500-509 and GS 5.004_02. It has only been tested on Intel hardware. =over 4 =item Tutorial With all the options, this module needs a good tutorial. It doesn't have a complete one yet. A I<"How to get started"> tutorial appeared B<The Perl Journal #13> (March 1999). The demo programs are a good starting point for additional examples. =item Buffers The size of the Win32 buffers are selectable with B<is_buffers>. But each read method currently uses a fixed internal buffer of 4096 bytes. This can be changed in the module source. The read-only B<internal_buffer> method will give the current size. There are other fixed internal buffers as well. But no one has needed to change those. The XS version will support dynamic buffer sizing. =item Modems Lots of modem-specific options are not supported. The same is true of TAPI, MAPI. I<API Wizards> are welcome to contribute. =item API Options Lots of options are just "passed through from the API". Some probably shouldn't be used together. The module validates the obvious choices when possible. For something really fancy, you may need additional API documentation. Available from I<Micro$oft Pre$$>. =back =head1 BUGS ActiveState ports of Perl for Win32 before build 500 do not support the tools for building extensions and so will not support later versions of this extension. In particular, the automated install and test scripts in this distribution work differently with ActiveState builds 3xx. There is no parameter checking on the "raw" API calls. You probably should be familiar with using the calls in "C" before doing much experimenting. On Win32, a port must B<close> before it can be reopened again by the same process. If a physical port can be accessed using more than one name (see above), all names are treated as one. The perl script can also be run multiple times within a single batch file or shell script. The I<Makefile.PL> spawns subshells with backticks to run the test suite on Perl 5.003 - ugly, but it works. On NT, a B<read_done> or B<write_done> returns I<False> if a background operation is aborted by a purge. Win95 returns I<True>. A few NT systems seem to set B<can_parity_enable> true, but do not actually support setting B<is_parity_enable>. This may be a characteristic of certain third-party serial drivers. Or a Microsoft bug. I have been able to reproduce it on my system, but not identify a specific cause. __Please send comments and bug reports to wcbirthisel@alum.mit.edu. =head1 AUTHORS Bill Birthisel, wcbirthisel@alum.mit.edu, http://members.aol.com/Bbirthisel/. Tye McQueen contributed but no longer supports these modules. =head1 SEE ALSO Wi32::SerialPort - High-level user interface/front-end for this module Win32API::File I<when available> Win32::API - Aldo Calpini's "Magic", http://www.divinf.it/dada/perl/ Perltoot.xxx - Tom (Christiansen)'s Object-Oriented Tutorial =head1 COPYRIGHT Copyright (C) 2010, Bill Birthisel. All rights reserved. This module is free software; you can redistribute it and/or modify it under the same terms as Perl itself. =head2 COMPATIBILITY Most of the code in this module has been stable since version 0.12. Version 0.20 adds explicit support for COM10++ and USB - although the functionality existed before. Perl ports before 5.6.0 are no longer supported for test or install. The modules themselves work with 5.003. 1 April 2010. =cut
Simpan