Windows NT DGPENSV2LPKMN 10.0 build 14393 (Windows Server 2016) AMD64
Apache/2.4.46 (Win64) OpenSSL/1.1.1h PHP/7.3.25
: 172.16.0.66 | : 172.16.0.254
Cant Read [ /etc/named.conf ]
7.3.25
SYSTEM
www.github.com/MadExploits
Terminal
AUTO ROOT
Adminer
Backdoor Destroyer
Linux Exploit
Lock Shell
Lock File
Create User
CREATE RDP
PHP Mailer
BACKCONNECT
UNLOCK SHELL
HASH IDENTIFIER
CPANEL RESET
CREATE WP USER
BLACK DEFEND!
README
+ Create Folder
+ Create File
[ A ]
[ C ]
[ D ]
C: /
laragon /
bin /
python /
python-3.10 /
Tools /
demo /
[ HOME SHELL ]
Name
Size
Permission
Action
__pycache__
[ DIR ]
drwxrwxrwx
beer.py
591
B
-rw-rw-rw-
eiffel.py
3.96
KB
-rw-rw-rw-
hanoi.py
4.65
KB
-rw-rw-rw-
life.py
9.03
KB
-rw-rw-rw-
markov.py
3.73
KB
-rw-rw-rw-
mcast.py
2.25
KB
-rw-rw-rw-
queens.py
2.3
KB
-rw-rw-rw-
redemo.py
5.78
KB
-rw-rw-rw-
rpython.py
848
B
-rw-rw-rw-
rpythond.py
1.35
KB
-rw-rw-rw-
sortvisu.py
20.14
KB
-rw-rw-rw-
spreadsheet.py
25.83
KB
-rw-rw-rw-
vector.py
1.92
KB
-rw-rw-rw-
Delete
Unzip
Zip
${this.title}
Close
Code Editor : queens.py
#!/usr/bin/env python3 """ N queens problem. The (well-known) problem is due to Niklaus Wirth. This solution is inspired by Dijkstra (Structured Programming). It is a classic recursive backtracking approach. """ N = 8 # Default; command line overrides class Queens: def __init__(self, n=N): self.n = n self.reset() def reset(self): n = self.n self.y = [None] * n # Where is the queen in column x self.row = [0] * n # Is row[y] safe? self.up = [0] * (2*n-1) # Is upward diagonal[x-y] safe? self.down = [0] * (2*n-1) # Is downward diagonal[x+y] safe? self.nfound = 0 # Instrumentation def solve(self, x=0): # Recursive solver for y in range(self.n): if self.safe(x, y): self.place(x, y) if x+1 == self.n: self.display() else: self.solve(x+1) self.remove(x, y) def safe(self, x, y): return not self.row[y] and not self.up[x-y] and not self.down[x+y] def place(self, x, y): self.y[x] = y self.row[y] = 1 self.up[x-y] = 1 self.down[x+y] = 1 def remove(self, x, y): self.y[x] = None self.row[y] = 0 self.up[x-y] = 0 self.down[x+y] = 0 silent = 0 # If true, count solutions only def display(self): self.nfound = self.nfound + 1 if self.silent: return print('+-' + '--'*self.n + '+') for y in range(self.n-1, -1, -1): print('|', end=' ') for x in range(self.n): if self.y[x] == y: print("Q", end=' ') else: print(".", end=' ') print('|') print('+-' + '--'*self.n + '+') def main(): import sys silent = 0 n = N if sys.argv[1:2] == ['-n']: silent = 1 del sys.argv[1] if sys.argv[1:]: n = int(sys.argv[1]) q = Queens(n) q.silent = silent q.solve() print("Found", q.nfound, "solutions.") if __name__ == "__main__": main()
Close