Windows NT DGPENSV2LPKMN 10.0 build 14393 (Windows Server 2016) AMD64
Apache/2.4.46 (Win64) OpenSSL/1.1.1h PHP/7.3.25
: 172.16.0.66 | : 172.16.0.254
Cant Read [ /etc/named.conf ]
7.3.25
SYSTEM
www.github.com/MadExploits
Terminal
AUTO ROOT
Adminer
Backdoor Destroyer
Linux Exploit
Lock Shell
Lock File
Create User
CREATE RDP
PHP Mailer
BACKCONNECT
UNLOCK SHELL
HASH IDENTIFIER
CPANEL RESET
CREATE WP USER
BLACK DEFEND!
README
+ Create Folder
+ Create File
[ A ]
[ C ]
[ D ]
C: /
xampp7 /
perl /
vendor /
lib /
Math /
Prime /
Util /
[ HOME SHELL ]
Name
Size
Permission
Action
ChaCha.pm
13.23
KB
-rw-rw-rw-
ECAffinePoint.pm
6.15
KB
-rw-rw-rw-
ECProjectivePoint.pm
6.4
KB
-rw-rw-rw-
Entropy.pm
5.17
KB
-rw-rw-rw-
GMP.pm
92.42
KB
-rw-rw-rw-
MemFree.pm
2.08
KB
-rw-rw-rw-
PP.pm
208.51
KB
-rw-rw-rw-
PPFE.pm
27.51
KB
-rw-rw-rw-
PrimalityProving.pm
31.14
KB
-rw-rw-rw-
PrimeArray.pm
11.76
KB
-rw-rw-rw-
PrimeIterator.pm
6.75
KB
-rw-rw-rw-
RandomPrimes.pm
37.95
KB
-rw-rw-rw-
ZetaBigFloat.pm
26.87
KB
-rw-rw-rw-
Delete
Unzip
Zip
${this.title}
Close
Code Editor : RandomPrimes.pm
package Math::Prime::Util::RandomPrimes; use strict; use warnings; use Carp qw/carp croak confess/; use Math::Prime::Util qw/ prime_get_config verify_prime is_provable_prime_with_cert primorial prime_count nth_prime is_prob_prime is_strong_pseudoprime next_prime prev_prime urandomb urandomm random_bytes /; BEGIN { $Math::Prime::Util::RandomPrimes::AUTHORITY = 'cpan:DANAJ'; $Math::Prime::Util::RandomPrimes::VERSION = '0.73'; } BEGIN { do { require Math::BigInt; Math::BigInt->import(try=>"GMP,Pari"); } unless defined $Math::BigInt::VERSION; use constant OLD_PERL_VERSION=> $] < 5.008; use constant MPU_MAXBITS => (~0 == 4294967295) ? 32 : 64; use constant MPU_64BIT => MPU_MAXBITS == 64; use constant MPU_32BIT => MPU_MAXBITS == 32; use constant MPU_MAXPARAM => MPU_32BIT ? 4294967295 : 18446744073709551615; use constant MPU_MAXDIGITS => MPU_32BIT ? 10 : 20; use constant MPU_USE_XS => prime_get_config->{'xs'}; use constant MPU_USE_GMP => prime_get_config->{'gmp'}; *_bigint_to_int = \&Math::Prime::Util::_bigint_to_int; } ################################################################################ # These are much faster than straightforward trial division when n is big. # You'll want to first do a test up to and including 23. my @_big_gcd; my $_big_gcd_top = 20046; my $_big_gcd_use = -1; sub _make_big_gcds { return if $_big_gcd_use >= 0; if (prime_get_config->{'gmp'}) { $_big_gcd_use = 0; return; } if (Math::BigInt->config()->{lib} !~ /^Math::BigInt::(GMP|Pari)/) { $_big_gcd_use = 0; return; } $_big_gcd_use = 1; my $p0 = primorial(Math::BigInt->new( 520)); my $p1 = primorial(Math::BigInt->new(2052)); my $p2 = primorial(Math::BigInt->new(6028)); my $p3 = primorial(Math::BigInt->new($_big_gcd_top)); $_big_gcd[0] = $p0->bdiv(223092870)->bfloor->as_int; $_big_gcd[1] = $p1->bdiv($p0)->bfloor->as_int; $_big_gcd[2] = $p2->bdiv($p1)->bfloor->as_int; $_big_gcd[3] = $p3->bdiv($p2)->bfloor->as_int; } ################################################################################ ################################################################################ # For random primes, there are two good papers that should be examined: # # "Fast Generation of Prime Numbers and Secure Public-Key # Cryptographic Parameters" by Ueli M. Maurer, 1995 # http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.2151 # related discussions: # http://www.daimi.au.dk/~ivan/provableprimesproject.pdf # Handbook of Applied Cryptography by Menezes, et al. # # "Close to Uniform Prime Number Generation With Fewer Random Bits" # by Pierre-Alain Fouque and Mehdi Tibouchi, 2011 # http://eprint.iacr.org/2011/481 # # Some things to note: # # 1) Joye and Paillier have patents on their methods. Never use them. # # 2) The easy method of next_prime(random number), known as PRIMEINC, is # fast but gives a terrible distribution. It has a positive bias and # most importantly the probability for a prime is proportional to its # gap, meaning some numbers in the range will be thousands of times # more likely than others). On the contrary however, nobody has a way # to exploit this, and it's not-uncommon to see used. # # We use: # TRIVIAL range within native integer size (2^32 or 2^64) # FTA1 random_nbit_prime with 65+ bits # INVA1 other ranges with 65+ bit range # where # TRIVIAL = monte-carlo method or equivalent, perfect uniformity. # FTA1 = Fouque/Tibouchi A1, very close to uniform # INVA1 = inverted FTA1, less uniform but works with arbitrary ranges # # The random_maurer_prime function uses Maurer's FastPrime algorithm. # # If Math::Prime::Util::GMP is installed, these functions will be many times # faster than other methods (e.g. Math::Pari monte-carlo or Crypt::Primes). # # Timings on Macbook. # The "with GMP" numbers use Math::Prime::Util::GMP 0.44. # The "no GMP" numbers are with no Math::BigInt backend, so very slow in comparison. # If another backend was used (GMP, Pari, LTM) it would be more comparable. # # random_nbit_prime random_maurer_prime # n-bits no GMP w/ MPU::GMP no GMP w/ MPU::GMP # ---------- -------- ----------- -------- ----------- # 24-bit 1uS same same same # 64-bit 5uS same same same # 128-bit 0.12s 70uS 0.29s 166uS # 256-bit 0.66s 379uS 1.82s 800uS # 512-bit 7.8s 0.0022s 16.2s 0.0044s # 1024-bit ---- 0.019s ---- 0.037s # 2048-bit ---- 0.23s ---- 0.35s # 4096-bit ---- 2.4s ---- 5.2s # # Random timings for 10M calls on i4770K: # 0.39 Math::Random::MTwist 0.13 # 0.41 ntheory <==== us # 0.89 system rand # 1.76 Math::Random::MT::Auto # 5.35 Bytes::Random::Secure OO w/ISAAC::XS # 7.43 Math::Random::Secure w/ISAAC::XS # 12.40 Math::Random::Secure # 12.78 Bytes::Random::Secure OO # 13.86 Bytes::Random::Secure function w/ISAAC::XS # 21.95 Bytes::Random::Secure function # 822.1 Crypt::Random # # time perl -E 'use Math::Random::MTwist "irand32"; irand32() for 1..10000000;' # time perl -E 'sub irand {int(rand(4294967296));} irand() for 1..10000000;' # time perl -E 'use Math::Random::MT::Auto; sub irand { Math::Random::MT::Auto::irand() & 0xFFFFFFFF } irand() for 1..10000000;' # time perl -E 'use Math::Random::Secure qw/irand/; irand() for 1..10000000;' # time perl -E 'use Bytes::Random::Secure qw/random_bytes/; sub irand {return unpack("L",random_bytes(4));} irand() for 1..10000000;' # time perl -E 'use Bytes::Random::Secure; my $rng = Bytes::Random::Secure->new(); sub irand {return $rng->irand;} irand() for 1..10000000;' # time perl -E 'use Crypt::Random qw/makerandom/; sub irand {makerandom(Size=>32, Uniform=>1, Strength=>0)} irand() for 1..100_000;' # > haveged daemon running to stop /dev/random blocking # > Both BRS and CR have more features that this isn't measuring. # # To verify distribution: # perl -Iblib/lib -Iblib/arch -MMath::Prime::Util=:all -E 'my %freq; $n=1000000; $freq{random_nbit_prime(6)}++ for (1..$n); printf("%4d %6.3f%%\n", $_, 100.0*$freq{$_}/$n) for sort {$a<=>$b} keys %freq;' # perl -Iblib/lib -Iblib/arch -MMath::Prime::Util=:all -E 'my %freq; $n=1000000; $freq{random_prime(1260437,1260733)}++ for (1..$n); printf("%4d %6.3f%%\n", $_, 100.0*$freq{$_}/$n) for sort {$a<=>$b} keys %freq;' # Sub to call with low and high already primes and verified range. my $_random_prime = sub { my($low,$high) = @_; my $prime; #{ my $bsize = 100; my @bins; my $counts = 10000000; # for my $c (1..$counts) { $bins[ $_IRANDF->($bsize-1) ]++; } # for my $b (0..$bsize) {printf("%4d %8.5f%%\n", $b, $bins[$b]/$counts);} } # low and high are both odds, and low < high. # This is fast for small values, low memory, perfectly uniform, and # consumes the minimum amount of randomness needed. But it isn't feasible # with large values. Also note that low must be a prime. if ($high <= 262144 && MPU_USE_XS) { my $li = prime_count(2, $low); my $irange = prime_count($low, $high); my $rand = urandomm($irange); return nth_prime($li + $rand); } $low-- if $low == 2; # Low of 2 becomes 1 for our program. # Math::BigInt::GMP's RT 71548 will wreak havoc if we don't do this. $low = Math::BigInt->new("$low") if ref($high) eq 'Math::BigInt'; confess "Invalid _random_prime parameters: $low, $high" if ($low % 2) == 0 || ($high % 2) == 0; # We're going to look at the odd numbers only. my $oddrange = (($high - $low) >> 1) + 1; croak "Large random primes not supported on old Perl" if OLD_PERL_VERSION && MPU_64BIT && $oddrange > 4294967295; # If $low is large (e.g. >10 digits) and $range is small (say ~10k), it # would be fastest to call primes in the range and randomly pick one. I'm # not implementing it now because it seems like a rare case. # If the range is reasonably small, generate using simple Monte Carlo # method (aka the 'trivial' method). Completely uniform. if ($oddrange < MPU_MAXPARAM) { my $loop_limit = 2000 * 1000; # To protect against broken rand if ($low > 11) { while ($loop_limit-- > 0) { $prime = $low + 2 * urandomm($oddrange); next if !($prime % 3) || !($prime % 5) || !($prime % 7) || !($prime % 11); return $prime if is_prob_prime($prime); } } else { while ($loop_limit-- > 0) { $prime = $low + 2 * urandomm($oddrange); next if $prime > 11 && (!($prime % 3) || !($prime % 5) || !($prime % 7) || !($prime % 11)); return 2 if $prime == 1; # Remember the special case for 2. return $prime if is_prob_prime($prime); } } croak "Random function broken?"; } # We have an ocean of range, and a teaspoon to hold randomness. # Since we have an arbitrary range and not a power of two, I don't see how # Fouque's algorithm A1 could be used (where we generate lower bits and # generate random sets of upper). Similarly trying to simply generate # upper bits is full of ways to trip up and get non-uniform results. # # What I'm doing here is: # # 1) divide the range into semi-evenly sized partitions, where each part # is as close to $rand_max_val as we can. # 2) randomly select one of the partitions. # 3) iterate choosing random values within the partition. # # The downside is that we're skewing a _lot_ farther from uniformity than # we'd like. Imagine we started at 0 with 1e18 partitions of size 100k # each. # Probability of '5' being returned = # 1.04e-22 = 1e-18 (chose first partition) * 1/9592 (chose '5') # Probability of '100003' being returned = # 1.19e-22 = 1e-18 (chose second partition) * 1/8392 (chose '100003') # Probability of '99999999999999999999977' being returned = # 5.20e-22 = 1e-18 (chose last partition) * 1/1922 (chose '99...77') # So the primes in the last partition will show up 5x more often. # The partitions are selected uniformly, and the primes within are selected # uniformly, but the number of primes in each bucket is _not_ uniform. # Their individual probability of being selected is the probability of the # partition (uniform) times the probability of being selected inside the # partition (uniform with respect to all other primes in the same # partition, but each partition is different and skewed). # # Partitions are typically much larger than 100k, but with a huge range # we still see this (e.g. ~3x from 0-10^30, ~10x from 0-10^100). # # When selecting n-bit or n-digit primes, this effect is MUCH smaller, as # the skew becomes approx lg(2^n) / lg(2^(n-1)) which is pretty close to 1. # # # Another idea I'd like to try sometime is: # pclo = prime_count_lower(low); # pchi = prime_count_upper(high); # do { # $nth = random selection between pclo and pchi # $prguess = nth_prime_approx($nth); # } while ($prguess >= low) && ($prguess <= high); # monte carlo select a prime in $prguess-2**24 to $prguess+2**24 # which accounts for the prime distribution. my($binsize, $nparts); my $rand_part_size = 1 << (MPU_64BIT ? 32 : 31); if (ref($oddrange) eq 'Math::BigInt') { # Go to some trouble here because some systems are wonky, such as # giving us +a/+b = -r. Also note the quotes for the bigint argument. # Without that, Math::BigInt::GMP can return garbage. my($nbins, $rem); ($nbins, $rem) = $oddrange->copy->bdiv( "$rand_part_size" ); $nbins++ if $rem > 0; $nbins = $nbins->as_int(); ($binsize,$rem) = $oddrange->copy->bdiv($nbins); $binsize++ if $rem > 0; $binsize = $binsize->as_int(); $nparts = $oddrange->copy->bdiv($binsize)->as_int(); $low = $high->copy->bzero->badd($low) if ref($low) ne 'Math::BigInt'; } else { my $nbins = int($oddrange / $rand_part_size); $nbins++ if $nbins * $rand_part_size != $oddrange; $binsize = int($oddrange / $nbins); $binsize++ if $binsize * $nbins != $oddrange; $nparts = int($oddrange/$binsize); } $nparts-- if ($nparts * $binsize) == $oddrange; my $rpart = urandomm($nparts+1); my $primelow = $low + 2 * $binsize * $rpart; my $partsize = ($rpart < $nparts) ? $binsize : $oddrange - ($nparts * $binsize); $partsize = _bigint_to_int($partsize) if ref($partsize) eq 'Math::BigInt'; #warn "range $oddrange = $nparts * $binsize + ", $oddrange - ($nparts * $binsize), "\n"; #warn " chose part $rpart size $partsize\n"; #warn " primelow is $low + 2 * $binsize * $rpart = $primelow\n"; #die "Result could be too large" if ($primelow + 2*($partsize-1)) > $high; # Generate random numbers in the interval until one is prime. my $loop_limit = 2000 * 1000; # To protect against broken rand # Simply things for non-bigints. if (ref($low) ne 'Math::BigInt') { while ($loop_limit-- > 0) { my $rand = urandomm($partsize); $prime = $primelow + $rand + $rand; croak "random prime failure, $prime > $high" if $prime > $high; if ($prime <= 23) { $prime = 2 if $prime == 1; # special case for low = 2 next unless (0,0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1)[$prime]; return $prime; } next if !($prime % 3) || !($prime % 5) || !($prime % 7) || !($prime % 11); # It looks promising. Check it. next unless is_prob_prime($prime); return $prime; } croak "Random function broken?"; } # By checking a wheel 30 mod, we can skip anything that would be a multiple # of 2, 3, or 5, without even having to create the bigint prime. my @w30 = (1,0,5,4,3,2,1,0,3,2,1,0,1,0,3,2,1,0,1,0,3,2,1,0,5,4,3,2,1,0); my $primelow30 = $primelow % 30; $primelow30 = _bigint_to_int($primelow30) if ref($primelow30) eq 'Math::BigInt'; # Big GCD's are hugely fast with GMP or Pari, but super slow with Calc. _make_big_gcds() if $_big_gcd_use < 0; while ($loop_limit-- > 0) { my $rand = urandomm($partsize); # Check wheel-30 mod my $rand30 = $rand % 30; next if $w30[($primelow30 + 2*$rand30) % 30] && ($rand > 3 || $primelow > 5); # Construct prime $prime = $primelow + $rand + $rand; croak "random prime failure, $prime > $high" if $prime > $high; if ($prime <= 23) { $prime = 2 if $prime == 1; # special case for low = 2 next unless (0,0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1)[$prime]; return $prime; } # With GMP, the fastest thing to do is check primality. if (MPU_USE_GMP) { next unless Math::Prime::Util::GMP::is_prime($prime); return $prime; } # No MPU:GMP, so primality checking is slow. Skip some composites here. next unless Math::BigInt::bgcd($prime, 7436429) == 1; if ($_big_gcd_use && $prime > $_big_gcd_top) { next unless Math::BigInt::bgcd($prime, $_big_gcd[0]) == 1; next unless Math::BigInt::bgcd($prime, $_big_gcd[1]) == 1; next unless Math::BigInt::bgcd($prime, $_big_gcd[2]) == 1; next unless Math::BigInt::bgcd($prime, $_big_gcd[3]) == 1; } # It looks promising. Check it. next unless is_prob_prime($prime); return $prime; } croak "Random function broken?"; }; # Cache of tight bounds for each digit. Helps performance a lot. my @_random_ndigit_ranges = (undef, [2,7], [11,97] ); my @_random_nbit_ranges = (undef, undef, [2,3],[5,7] ); my %_random_cache_small; # For fixed small ranges with XS, e.g. 6-digit, 18-bit sub _random_xscount_prime { my($low,$high) = @_; my($istart, $irange); my $cachearef = $_random_cache_small{$low,$high}; if (defined $cachearef) { ($istart, $irange) = @$cachearef; } else { my $beg = ($low <= 2) ? 2 : next_prime($low-1); my $end = ($high < ~0) ? prev_prime($high + 1) : prev_prime($high); ($istart, $irange) = ( prime_count(2, $beg), prime_count($beg, $end) ); $_random_cache_small{$low,$high} = [$istart, $irange]; } my $rand = urandomm($irange); return nth_prime($istart + $rand); } sub random_prime { my($low,$high) = @_; return if $high < 2 || $low > $high; if ($high-$low > 1000000000) { # Range is large, just make them odd if needed. $low = 2 if $low < 2; $low++ if $low > 2 && ($low % 2) == 0; $high-- if ($high % 2) == 0; } else { # Tighten the range to the nearest prime. $low = ($low <= 2) ? 2 : next_prime($low-1); $high = ($high == ~0) ? prev_prime($high) : prev_prime($high + 1); return $low if ($low == $high) && is_prob_prime($low); return if $low >= $high; # At this point low and high are both primes, and low < high. } # At this point low and high are both primes, and low < high. return $_random_prime->($low, $high); } sub random_ndigit_prime { my($digits) = @_; croak "random_ndigit_prime, digits must be >= 1" unless $digits >= 1; return _random_xscount_prime( int(10 ** ($digits-1)), int(10 ** $digits) ) if $digits <= 6 && MPU_USE_XS; my $bigdigits = $digits >= MPU_MAXDIGITS; if ($bigdigits && prime_get_config->{'nobigint'}) { croak "random_ndigit_prime with -nobigint, digits out of range" if $digits > MPU_MAXDIGITS; # Special case for nobigint and threshold digits if (!defined $_random_ndigit_ranges[$digits]) { my $low = int(10 ** ($digits-1)); my $high = ~0; $_random_ndigit_ranges[$digits] = [next_prime($low),prev_prime($high)]; } } if (!defined $_random_ndigit_ranges[$digits]) { if ($bigdigits) { my $low = Math::BigInt->new('10')->bpow($digits-1); my $high = Math::BigInt->new('10')->bpow($digits); # Just pull the range in to the nearest odd. $_random_ndigit_ranges[$digits] = [$low+1, $high-1]; } else { my $low = int(10 ** ($digits-1)); my $high = int(10 ** $digits); # Note: Perl 5.6.2 cannot represent 10**15 as an integer, so things # will crash all over the place if you try. We can stringify it, but # will just fail tests later. $_random_ndigit_ranges[$digits] = [next_prime($low),prev_prime($high)]; } } my ($low, $high) = @{$_random_ndigit_ranges[$digits]}; return $_random_prime->($low, $high); } my @_random_nbit_m; my @_random_nbit_lambda; my @_random_nbit_arange; sub random_nbit_prime { my($bits) = @_; croak "random_nbit_prime, bits must be >= 2" unless $bits >= 2; $bits = int("$bits"); # Very small size, use the nth-prime method if ($bits <= 20 && MPU_USE_XS) { if ($bits <= 4) { return (2,3)[urandomb(1)] if $bits == 2; return (5,7)[urandomb(1)] if $bits == 3; return (11,13)[urandomb(1)] if $bits == 4; } return _random_xscount_prime( 1 << ($bits-1), 1 << $bits ); } croak "Mid-size random primes not supported on broken old Perl" if OLD_PERL_VERSION && MPU_64BIT && $bits > 49 && $bits <= 64; # Fouque and Tibouchi (2011) Algorithm 1 (basic) # Modified to make sure the nth bit is always set. # # Example for random_nbit_prime(512) on 64-bit Perl: # p: 1aaaaaaaabbbbbbbbbbbbbbbbbbbb1 # ^^ ^ ^--- Trailing 1 so p is odd # || +--- 512-63-2 = 447 lower bits selected before loop # |+--- 63 upper bits selected in loop, repeated until p is prime # +--- upper bit is 1 so we generate an n-bit prime # total: 1 + 63 + 447 + 1 = 512 bits # # Algorithm 2 is implemented in a previous commit on github. The problem # is that it doesn't set the nth bit, and making that change requires a # modification of the algorithm. It was not a lot faster than this A1 # with the native int trial division. If the irandf function was very # slow, then A2 would look more promising. # if (1 && $bits > 64) { my $l = (MPU_64BIT && $bits > 79) ? 63 : 31; $l = 49 if $l == 63 && OLD_PERL_VERSION; # Fix for broken Perl 5.6 $l = $bits-2 if $bits-2 < $l; my $brand = urandomb($bits-$l-2); $brand = Math::BigInt->new("$brand") unless ref($brand) eq 'Math::BigInt'; my $b = $brand->blsft(1)->binc(); # Precalculate some modulii so we can do trial division on native int # 9699690 = 2*3*5*7*11*13*17*19, so later operations can be native ints my @premod; my $bpremod = _bigint_to_int($b->copy->bmod(9699690)); my $twopremod = _bigint_to_int(Math::BigInt->new(2)->bmodpow($bits-$l-1, 9699690)); foreach my $zi (0 .. 19-1) { foreach my $pm (3, 5, 7, 11, 13, 17, 19) { next if $zi >= $pm || defined $premod[$pm]; $premod[$pm] = $zi if ( ($twopremod*$zi+$bpremod) % $pm) == 0; } } _make_big_gcds() if $_big_gcd_use < 0; if (!MPU_USE_GMP) { require Math::Prime::Util::PP; } my $loop_limit = 1_000_000; while ($loop_limit-- > 0) { my $a = (1 << $l) + urandomb($l); # $a % s == $premod[s] => $p % s == 0 => p will be composite next if $a % 3 == $premod[ 3] || $a % 5 == $premod[ 5] || $a % 7 == $premod[ 7] || $a % 11 == $premod[11] || $a % 13 == $premod[13] || $a % 17 == $premod[17] || $a % 19 == $premod[19]; my $p = Math::BigInt->new("$a")->blsft($bits-$l-1)->badd($b); #die " $a $b $p" if $a % 11 == $premod[11] && $p % 11 != 0; #die "!$a $b $p" if $a % 11 != $premod[11] && $p % 11 == 0; if (MPU_USE_GMP) { next unless Math::Prime::Util::GMP::is_prime($p); } else { next unless Math::BigInt::bgcd($p, 1348781387) == 1; # 23-43 if ($_big_gcd_use && $p > $_big_gcd_top) { next unless Math::BigInt::bgcd($p, $_big_gcd[0]) == 1; next unless Math::BigInt::bgcd($p, $_big_gcd[1]) == 1; next unless Math::BigInt::bgcd($p, $_big_gcd[2]) == 1; next unless Math::BigInt::bgcd($p, $_big_gcd[3]) == 1; } # We know we don't have GMP and are > 2^64, so go directly to this. next unless Math::Prime::Util::PP::is_bpsw_prime($p); } return $p; } croak "Random function broken?"; } # The Trivial method. Great uniformity, and fine for small sizes. It # gets very slow as the bit size increases, but that is why we have the # method above for bigints. if (1) { my $loop_limit = 2_000_000; if ($bits > MPU_MAXBITS) { my $p = Math::BigInt->bone->blsft($bits-1)->binc(); while ($loop_limit-- > 0) { my $n = Math::BigInt->new(''.urandomb($bits-2))->blsft(1)->badd($p); return $n if is_prob_prime($n); } } else { my $p = (1 << ($bits-1)) + 1; while ($loop_limit-- > 0) { my $n = $p + (urandomb($bits-2) << 1); return $n if is_prob_prime($n); } } croak "Random function broken?"; } else { # Send through the generic random_prime function. Decently fast, but # quite a bit slower than the F&T A1 method above. if (!defined $_random_nbit_ranges[$bits]) { if ($bits > MPU_MAXBITS) { my $low = Math::BigInt->new('2')->bpow($bits-1); my $high = Math::BigInt->new('2')->bpow($bits); # Don't pull the range in to primes, just odds $_random_nbit_ranges[$bits] = [$low+1, $high-1]; } else { my $low = 1 << ($bits-1); my $high = ($bits == MPU_MAXBITS) ? ~0-1 : ~0 >> (MPU_MAXBITS - $bits); $_random_nbit_ranges[$bits] = [next_prime($low-1),prev_prime($high+1)]; # Example: bits = 7. # low = 1<<6 = 64. next_prime(64-1) = 67 # high = ~0 >> (64-7) = 127. prev_prime(127+1) = 127 } } my ($low, $high) = @{$_random_nbit_ranges[$bits]}; return $_random_prime->($low, $high); } } # For stripping off the header on certificates so they can be combined. sub _strip_proof_header { my $proof = shift; $proof =~ s/^\[MPU - Primality Certificate\]\nVersion \S+\n+Proof for:\nN (\d+)\n+//ms; return $proof; } sub random_maurer_prime { my $k = shift; croak "random_maurer_prime, bits must be >= 2" unless $k >= 2; $k = int("$k"); return random_nbit_prime($k) if $k <= MPU_MAXBITS && !OLD_PERL_VERSION; my ($n, $cert) = random_maurer_prime_with_cert($k); croak "maurer prime $n failed certificate verification!" unless verify_prime($cert); return $n; } sub random_maurer_prime_with_cert { my $k = shift; croak "random_maurer_prime, bits must be >= 2" unless $k >= 2; $k = int("$k"); # This should never happen. Trap now to prevent infinite loop. croak "number of bits must not be a bigint" if ref($k) eq 'Math::BigInt'; # Results for random_nbit_prime are proven for all native bit sizes. my $p0 = MPU_MAXBITS; $p0 = 49 if OLD_PERL_VERSION && MPU_MAXBITS > 49; if ($k <= $p0) { my $n = random_nbit_prime($k); my ($isp, $cert) = is_provable_prime_with_cert($n); croak "small nbit prime could not be proven" if $isp != 2; return ($n, $cert); } # Set verbose to 3 to get pretty output like Crypt::Primes my $verbose = prime_get_config->{'verbose'}; local $| = 1 if $verbose > 2; do { require Math::BigFloat; Math::BigFloat->import(); } if !defined $Math::BigFloat::VERSION; # Ignore Maurer's g and c that controls how much trial division is done. my $r = Math::BigFloat->new("0.5"); # relative size of the prime q my $m = 20; # makes sure R is big enough # Generate a random prime q of size $r*$k, where $r >= 0.5. Try to # cleverly select r to match the size of a typical random factor. if ($k > 2*$m) { do { my $s = Math::Prime::Util::drand(); $r = Math::BigFloat->new(2)->bpow($s-1); } while ($k*$r >= $k-$m); } # I've seen +0, +1, and +2 here. Maurer uses +0. Menezes uses +1. # We can use +1 because we're using BLS75 theorem 3 later. my $smallk = int(($r * $k)->bfloor->bstr) + 1; my ($q, $qcert) = random_maurer_prime_with_cert($smallk); $q = Math::BigInt->new("$q") unless ref($q) eq 'Math::BigInt'; my $I = Math::BigInt->new(2)->bpow($k-2)->bdiv($q)->bfloor->as_int(); print "r = $r k = $k q = $q I = $I\n" if $verbose && $verbose != 3; $qcert = ($q < Math::BigInt->new("18446744073709551615")) ? "" : _strip_proof_header($qcert); # Big GCD's are hugely fast with GMP or Pari, but super slow with Calc. _make_big_gcds() if $_big_gcd_use < 0; my $ONE = Math::BigInt->bone; my $TWO = $ONE->copy->binc; my $loop_limit = 1_000_000 + $k * 1_000; while ($loop_limit-- > 0) { # R is a random number between $I+1 and 2*$I #my $R = $I + 1 + urandomm( $I ); my $R = $I->copy->binc->badd( urandomm($I) ); #my $n = 2 * $R * $q + 1; my $nm1 = $TWO->copy->bmul($R)->bmul($q); my $n = $nm1->copy->binc; # We constructed a promising looking $n. Now test it. print "." if $verbose > 2; if (MPU_USE_GMP) { # MPU::GMP::is_prob_prime has fast tests built in. next unless Math::Prime::Util::GMP::is_prob_prime($n); } else { # No GMP, so first do trial divisions, then a SPSP test. next unless Math::BigInt::bgcd($n, 111546435)->is_one; if ($_big_gcd_use && $n > $_big_gcd_top) { next unless Math::BigInt::bgcd($n, $_big_gcd[0])->is_one; next unless Math::BigInt::bgcd($n, $_big_gcd[1])->is_one; next unless Math::BigInt::bgcd($n, $_big_gcd[2])->is_one; next unless Math::BigInt::bgcd($n, $_big_gcd[3])->is_one; } print "+" if $verbose > 2; next unless is_strong_pseudoprime($n, 3); } print "*" if $verbose > 2; # We could pick a random generator by doing: # Step 1: pick a random r # Step 2: compute g = r^((n-1)/q) mod p # Step 3: if g == 1, goto Step 1. # Note that n = 2*R*q+1, hence the exponent is 2*R. # We could set r = 0.3333 earlier, then use BLS75 theorem 5 here. # The chain would be shorter, requiring less overall work for # large inputs. Maurer's paper discusses the idea. # Use BLS75 theorem 3. This is easier and possibly faster than # BLS75 theorem 4 (Pocklington) used by Maurer's paper. # Check conditions -- these should be redundant. my $m = $TWO * $R; if (! ($q->is_odd && $q > 2 && $m > 0 && $m * $q + $ONE == $n && $TWO*$q+$ONE > $n->copy->bsqrt()) ) { carp "Maurer prime failed BLS75 theorem 3 conditions. Retry."; next; } # Find a suitable a. Move on if one isn't found quickly. foreach my $trya (2, 3, 5, 7, 11, 13) { my $a = Math::BigInt->new($trya); # m/2 = R (n-1)/2 = (2*R*q)/2 = R*q next unless $a->copy->bmodpow($R, $n) != $nm1; next unless $a->copy->bmodpow($R*$q, $n) == $nm1; print "($k)" if $verbose > 2; croak "Maurer prime $n=2*$R*$q+1 failed BPSW" unless is_prob_prime($n); my $cert = "[MPU - Primality Certificate]\nVersion 1.0\n\n" . "Proof for:\nN $n\n\n" . "Type BLS3\nN $n\nQ $q\nA $a\n" . $qcert; return ($n, $cert); } # Didn't pass the selected a values. Try another R. } croak "Failure in random_maurer_prime, could not find a prime\n"; } # End of random_maurer_prime sub random_shawe_taylor_prime_with_cert { my $k = shift; my $seed = random_bytes(512/8); my($status,$prime,$prime_seed,$prime_gen_counter,$cert) = _ST_Random_prime($k, $seed); croak "Shawe-Taylor random prime failure" unless $status; croak "Shawe-Taylor random prime failure: prime $prime failed certificate verification!" unless verify_prime($cert); return ($prime,$cert); } sub _seed_plus_one { my($s) = @_; for (my $i = length($s)-1; $i >= 0; $i--) { vec($s, $i, 8)++; last unless vec($s, $i, 8) == 0; } return $s; } sub _ST_Random_prime { # From FIPS 186-4 my($k, $input_seed) = @_; croak "Shawe-Taylor random prime must have length >= 2" if $k < 2; $k = int("$k"); croak "Shawe-Taylor random prime, invalid input seed" unless defined $input_seed && length($input_seed) >= 32; if (!defined $Digest::SHA::VERSION) { eval { require Digest::SHA; my $version = $Digest::SHA::VERSION; $version =~ s/[^\d.]//g; $version >= 4.00; } or do { croak "Must have Digest::SHA 4.00 or later"; }; } my $k2 = Math::BigInt->new(2)->bpow($k-1); if ($k < 33) { my $seed = $input_seed; my $prime_gen_counter = 0; my $kmask = 0xFFFFFFFF >> (32-$k); # Does the mod operation my $kstencil = (1 << ($k-1)) | 1; # Sets high and low bits while (1) { my $seedp1 = _seed_plus_one($seed); my $cvec = Digest::SHA::sha256($seed) ^ Digest::SHA::sha256($seedp1); # my $c = Math::BigInt->from_hex('0x' . unpack("H*", $cvec)); # $c = $k2 + ($c % $k2); # $c = (2 * ($c >> 1)) + 1; my($c) = unpack("N*", substr($cvec,-4,4)); $c = ($c & $kmask) | $kstencil; $prime_gen_counter++; $seed = _seed_plus_one($seedp1); my ($isp, $cert) = is_provable_prime_with_cert($c); return (1,$c,$seed,$prime_gen_counter,$cert) if $isp; return (0,0,0,0) if $prime_gen_counter > 10000 + 16*$k; } } my($status,$c0,$seed,$prime_gen_counter,$cert) = _ST_Random_prime( (($k+1)>>1)+1, $input_seed); return (0,0,0,0) unless $status; $cert = ($c0 < Math::BigInt->new("18446744073709551615")) ? "" : _strip_proof_header($cert); my $iterations = int(($k + 255) / 256) - 1; # SHA256 generates 256 bits my $old_counter = $prime_gen_counter; my $xstr = ''; for my $i (0 .. $iterations) { $xstr = Digest::SHA::sha256_hex($seed) . $xstr; $seed = _seed_plus_one($seed); } my $x = Math::BigInt->from_hex('0x'.$xstr); $x = $k2 + ($x % $k2); my $t = ($x + 2*$c0 - 1) / (2*$c0); _make_big_gcds() if $_big_gcd_use < 0; while (1) { if (2*$t*$c0 + 1 > 2*$k2) { $t = ($k2 + 2*$c0 - 1) / (2*$c0); } my $c = 2*$t*$c0 + 1; $prime_gen_counter++; # Don't do the Pocklington check unless the candidate looks prime my $looks_prime = 0; if (MPU_USE_GMP) { # MPU::GMP::is_prob_prime has fast tests built in. $looks_prime = Math::Prime::Util::GMP::is_prob_prime($c); } else { # No GMP, so first do trial divisions, then a SPSP test. $looks_prime = Math::BigInt::bgcd($c, 111546435)->is_one; if ($looks_prime && $_big_gcd_use && $c > $_big_gcd_top) { $looks_prime = Math::BigInt::bgcd($c, $_big_gcd[0])->is_one && Math::BigInt::bgcd($c, $_big_gcd[1])->is_one && Math::BigInt::bgcd($c, $_big_gcd[2])->is_one && Math::BigInt::bgcd($c, $_big_gcd[3])->is_one; } $looks_prime = 0 if $looks_prime && !is_strong_pseudoprime($c, 3); } if ($looks_prime) { # We could use a in (2,3,5,7,11,13), but pedantically use FIPS 186-4. my $astr = ''; for my $i (0 .. $iterations) { $astr = Digest::SHA::sha256_hex($seed) . $astr; $seed = _seed_plus_one($seed); } my $a = Math::BigInt->from_hex('0x'.$astr); $a = ($a % ($c-3)) + 2; my $z = $a->copy->bmodpow(2*$t,$c); if (Math::BigInt::bgcd($z-1,$c)->is_one && $z->copy->bmodpow($c0,$c)->is_one) { croak "Shawe-Taylor random prime failure at ($k): $c not prime" unless is_prob_prime($c); $cert = "[MPU - Primality Certificate]\nVersion 1.0\n\n" . "Proof for:\nN $c\n\n" . "Type Pocklington\nN $c\nQ $c0\nA $a\n" . $cert; return (1, $c, $seed, $prime_gen_counter, $cert); } } else { # Update seed "as if" we performed the Pocklington check from FIPS 186-4 for my $i (0 .. $iterations) { $seed = _seed_plus_one($seed); } } return (0,0,0,0) if $prime_gen_counter > 10000 + 16*$k + $old_counter; $t++; } } # Gordon's algorithm for generating a strong prime. sub random_strong_prime { my $t = shift; croak "random_strong_prime, bits must be >= 128" unless $t >= 128; $t = int("$t"); croak "Random strong primes must be >= 173 bits on old Perl" if OLD_PERL_VERSION && MPU_64BIT && $t < 173; my $l = (($t+1) >> 1) - 2; my $lp = int($t/2) - 20; my $lpp = $l - 20; while (1) { my $qp = random_nbit_prime($lp); my $qpp = random_nbit_prime($lpp); $qp = Math::BigInt->new("$qp") unless ref($qp) eq 'Math::BigInt'; $qpp = Math::BigInt->new("$qpp") unless ref($qpp) eq 'Math::BigInt'; my ($il, $rem) = Math::BigInt->new(2)->bpow($l-1)->bdec()->bdiv(2*$qpp); $il++ if $rem > 0; $il = $il->as_int(); my $iu = Math::BigInt->new(2)->bpow($l)->bsub(2)->bdiv(2*$qpp)->as_int(); my $istart = $il + urandomm($iu - $il + 1); for (my $i = $istart; $i <= $iu; $i++) { # Search for q my $q = 2 * $i * $qpp + 1; next unless is_prob_prime($q); my $pp = $qp->copy->bmodpow($q-2, $q)->bmul(2)->bmul($qp)->bdec(); my ($jl, $rem) = Math::BigInt->new(2)->bpow($t-1)->bsub($pp)->bdiv(2*$q*$qp); $jl++ if $rem > 0; $jl = $jl->as_int(); my $ju = Math::BigInt->new(2)->bpow($t)->bdec()->bsub($pp)->bdiv(2*$q*$qp)->as_int(); my $jstart = $jl + urandomm($ju - $jl + 1); for (my $j = $jstart; $j <= $ju; $j++) { # Search for p my $p = $pp + 2 * $j * $q * $qp; return $p if is_prob_prime($p); } } } } sub random_proven_prime { my $k = shift; my ($n, $cert) = random_proven_prime_with_cert($k); croak "random_proven_prime $n failed certificate verification!" unless verify_prime($cert); return $n; } sub random_proven_prime_with_cert { my $k = shift; if (prime_get_config->{'gmp'} && $k <= 450) { my $n = random_nbit_prime($k); my ($isp, $cert) = is_provable_prime_with_cert($n); croak "small nbit prime could not be proven" if $isp != 2; return ($n, $cert); } return random_maurer_prime_with_cert($k); } 1; __END__ # ABSTRACT: Generate random primes =pod =encoding utf8 =head1 NAME Math::Prime::Util::RandomPrimes - Generate random primes =head1 VERSION Version 0.73 =head1 SYNOPSIS =head1 DESCRIPTION Routines to generate random primes, including constructing proven primes. =head1 RANDOM PRIME FUNCTIONS =head2 random_prime Generate a random prime between C<low> and C<high>. If given one argument, C<low> will be 2. =head2 random_ndigit_prime Generate a random prime with C<n> digits. C<n> must be at least 1. =head2 random_nbit_prime Generate a random prime with C<n> bits. C<n> must be at least 2. =head2 random_maurer_prime Construct a random provable prime of C<n> bits using Maurer's FastPrime algorithm. C<n> must be at least 2. =head2 random_maurer_prime_with_cert Construct a random provable prime of C<n> bits using Maurer's FastPrime algorithm. C<n> must be at least 2. Returns a list of two items: the prime and the certificate. =head2 random_shawe_taylor_prime Construct a random provable prime of C<n> bits using Shawe-Taylor's algorithm. C<n> must be at least 2. The implementation is from FIPS 186-4 and uses SHA-256 with 512 bits of randomness. =head2 random_shawe_taylor_prime_with_cert Construct a random provable prime of C<n> bits using Shawe-Taylor's algorithm. C<n> must be at least 2. Returns a list of two items: the prime and the certificate. =head2 random_strong_prime Construct a random strong prime of C<n> bits. C<n> must be at least 128. =head2 random_proven_prime Generate or construct a random provable prime of C<n> bits. C<n> must be at least 2. =head2 random_proven_prime_with_cert Generate or construct a random provable prime of C<n> bits. C<n> must be at least 2. Returns a list of two items: the prime and the certificate. =head1 SEE ALSO L<Math::Prime::Util> =head1 AUTHORS Dana Jacobsen E<lt>dana@acm.orgE<gt> =head1 COPYRIGHT Copyright 2012-2013 by Dana Jacobsen E<lt>dana@acm.orgE<gt> This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself. =cut
Close